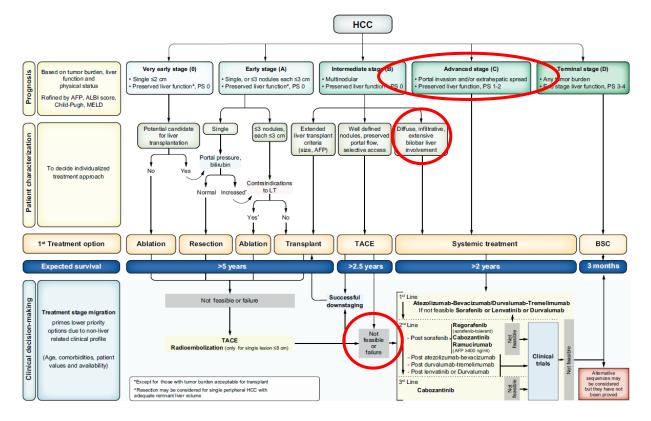

HCC and Systemic/Radiologic Rx Options

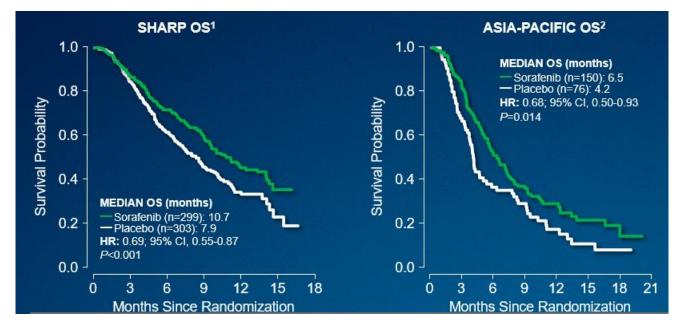
Richard S. Finn, MD


Professor of Clinical Medicine Division of Hematology/Oncology Director, Signal Transduction and Therapeutics Program Jonsson Comprehensive Cancer Center Geffen School of Medicine at UCLA Santa Monica, California

BCLC Management of HCC-2022

Reig M. J Hep. 2022.

BCLC Management of HCC-2022

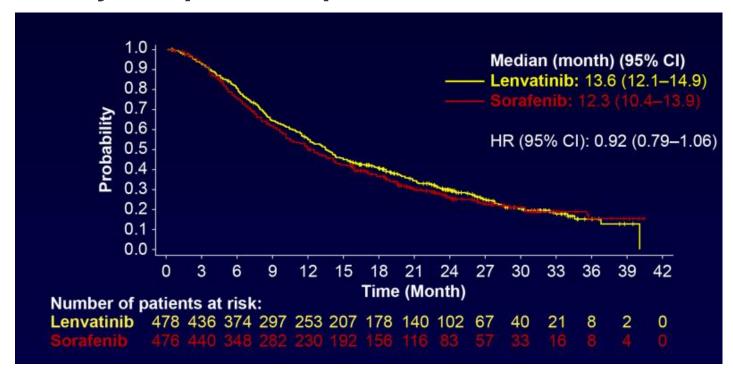

Reig M. J Hep. 2022.

Positive Phase 3 Studies in Advanced HCC With FDA Approvals

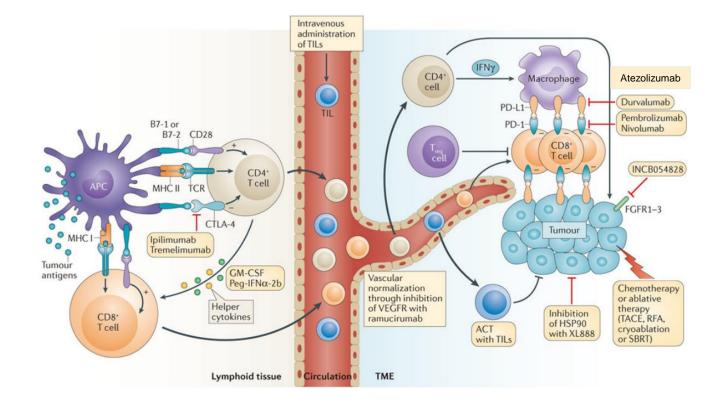
	SHARP	REFLECT	IMBRAVE 150	HIMALAYA
Control	placebo	sorafenib	sorafenib	sorafenib
Treatment Arm	Sorafenib	Lenvatinib	nvatinib Atezo-bev	
VP4 included	yes	no	yes	no
HR OS	0.69	0.92 (Non-inf)	0.58	0.78
HR PFS	0.58 (TTP)	0.66	0.59	0.90 (Not sig)
ORR (RECIST)	2%	18.8 %	30%	20%
Reference	Llovet NEJM 2008	Kudo Lancet 2017	Finn NEJM 2020, Cheng J Hep 2022	Abou-alfa NEJM Evidence 2022

Pivotal Trials Demonstrated OS Benefit With Sorafenib in uHCC

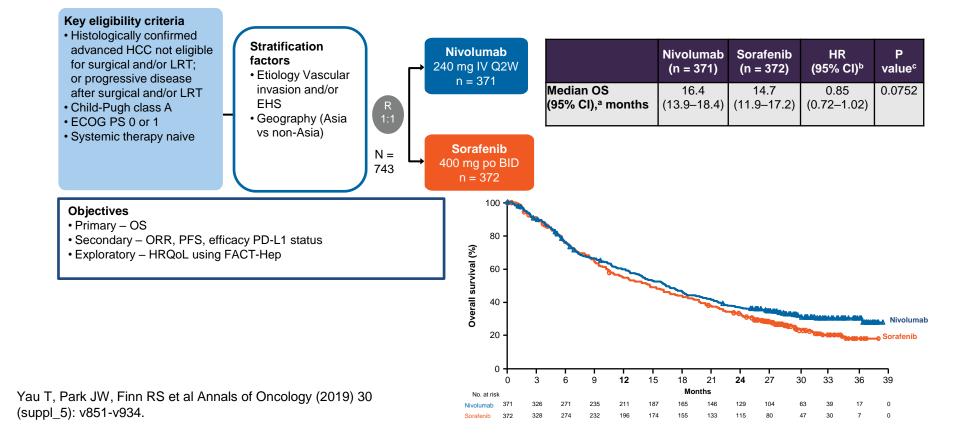
Sorafenib consistently increased OS in different patient populations across geographic regions and etiologies


HR=hazard ratio; SHARP=Sorafenib HCC Assessment Randomized Protocol Trial.

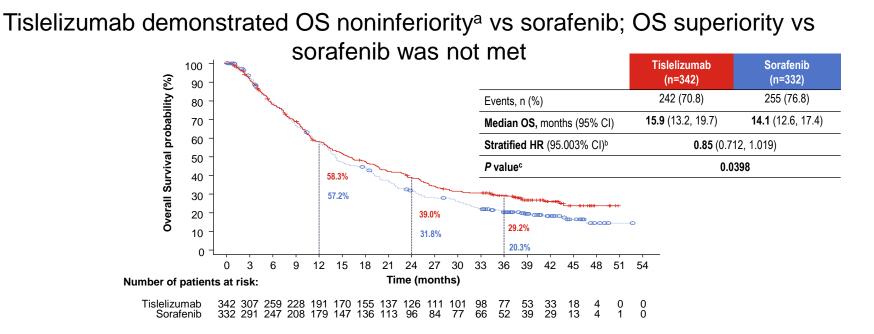
1. Llovet J et al. N Engl J Med. 2008;359:378-390; 2. Cheng A-L et al. Lancet Oncol. 2009;10:25-34.



Primary Endpoint: Kaplan-Meier Estimate of OS


Kudo M, Finn RS, Qin S et al. Lancet. 2018.

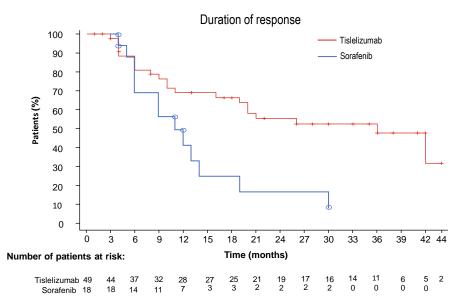
Targeting the Immune System in Cancer



Rizvi. Nat Rev Clin Oncol. 2018;15:95.

Phase III Nivolumab vs. Sorafenib 1st Line CheckMate 459

RATIONALE-301: Overall Survival


Masatoshi Kudo

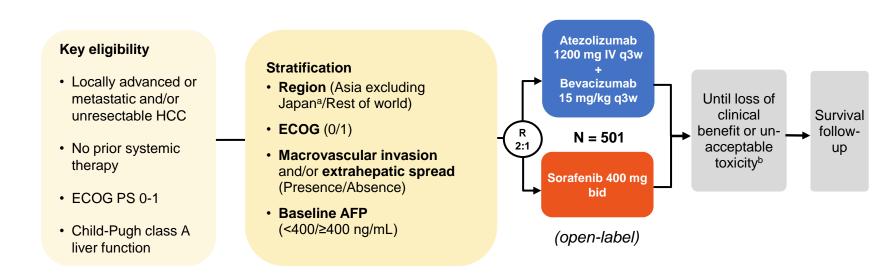
Data cutoff: July 11, 2022. OS was assessed in the ITT population. ^aPrespecified boundary of NI: upper bound of 95.003% CI of stratified HR <1.08; pre-specified boundary of superiority: one-sided *P* value <0.0223 (approximate HR <0.8352). ^bHR was based on a Cox proportional hazard model including treatment as a covariate, geography (Asia [including Japan] vs rest of world [EU/US]), macrovascular invasion and/or extrahepatic spread (present vs absent), etiology (HCV vs other), and ECOG PS (0 vs 1) as stratification factors. ^cOne-sided stratified log-rank test. Abbreviations: CI, confidence interval; ECOG PS, European Cooperative Oncology Group performance status; HCV, hepatitis C virus; HR, hazard ratio; ITT, intent-to-treat; NI, non-inferiority; OS, overall survival.

RATIONALE-301: Overall Response Rate by IRC

Tislelizumab was associated with a higher ORR and more durable responses vs sorafenib

	Tislelizumab (n=342)	Sorafenib (n=332)
ORR, n (%) [95% Cl]ª	49 (14.3) [10.8, 18.5]	18 (5.4) [3.2, 8.4]
Best overall response, n (%)ª		
CR	10 (2.9)	1 (0.3)
PR	39 (11.4)	17 (5.1)
SD	94 (27.5)	137 (41.3)
PD	166 (48.5)	117 (35.2)
Undetermined ^b	26 (7.6)	50 (15.1)
Non-CR/non-PD ^c	7 (2.0)	10 (3.0)
Responders	Tislelizumab (n=49)	Sorafenib (n=18)
Median DoR, months (95% CI)	36.1 (16.8, NE)	11.0 (6.2, 14.7)
Patients with ongoing response, n (%) ^d	20/28 (71.4)	2/5 (40.0)

Masatoshi Kudo


Data cutoff: July 11, 2022. ORR was assessed in the ITT population. ^aConfirmed responses; ^bPatients with no postbaseline tumor assessment (not assessable) or a nonevaluable tumor assessment. ^cPatients were assessed as non-CR/non-PD if the IRC was not able to identify the target lesions at screening. Patients with no target lesions were evaluated based on the assessment of nontarget lesions or the presence of new lesions. ^dPatients who had PD or died were excluded from this analysis. Abbreviations: CI, confidence interval; CR, complete response; DoR, duration of response; IRC, independent review committee; ITT, intent-to-treat; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Phase 3 IO Combination Studies in HCC

- IO + VEGF antibody
 - Atezolizumab + bevacizumab (IMBrave 150) (Positive)
 - Sintilimab + IBI305 (ORIENT 32) (Positive)
- IO + TKI
 - Atezolizumab+ cabozantinib (COSMIC 312) (Negative)
 - Pembrolizumab + lenvatinib (LEAP 002) (Negative)
 - Camrelizumab + apatinib (Positive)
- IO +IO
 - Durvalumab + tremilimumab (HIMALAYA) (Positive)
 - Nivolumab + ipilimumab (9DW) (ongoing)

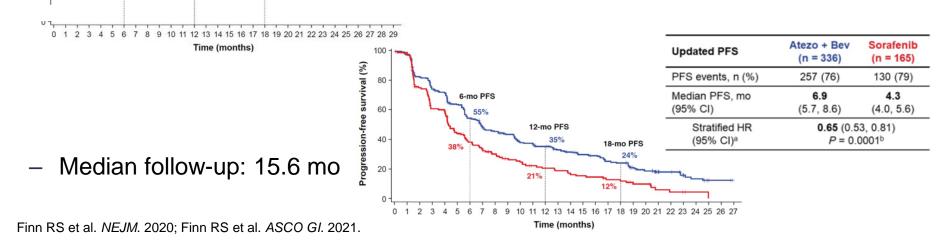
IO + VEGF Antibody

IMbrave150 Study Design

Co-primary endpoints

- OS
- IRF-assessed PFS per RECIST 1.1

Secondary endpoints included:


- IRF-assessed ORR, DOR per RECIST 1.1 and HCC mRECIST^b
- PROs: TTD^c of QOL, physical and role functioning (EORTC QLQ-C30)
- · Safety and tolerability assessed based on the nature, frequency and severity of AEs per NCI CTCAE version 4.0

Finn et al. New Engl J Med. 2020.

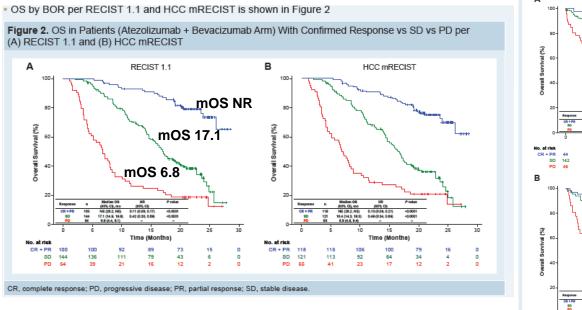
^a Japan is included in rest of world. ^b Tumor assessment by computed tomography or magnetic resonance imaging was done at baseline and every 6 weeks until 54 weeks, then every 9 weeks thereafter. ^c Time from randomization to first decrease from baseline of ≥ 10 points maintained for 2 consecutive assessments or 1 assessment followed by death from any cause within 3 weeks. AFP, a-fetoprotein; CTCAE, Common Terminology Criteria for Adverse Events; ECOG PS, Eastern Cooperative Oncology Group Performance Status; EORTC QLQ-C30, European Organization for Research and Treatment of Cancer quality-of-life questionnaire for cancer; IRF, independent review facility; mRECIST, modified RECIST; NCI, National Cancer Institute; PRO, patient-reported outcomes; QOL, quality of life; TD, time to deterioration.

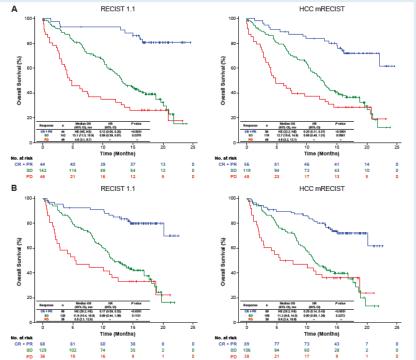
IMbrave150 Trial Key Efficacy Data: Updated OS and PFS

Primary analysis OS/PFS HR: 0.58/0.59 (median follow-up: 8.6 mo) 6-mo OS Atezo + Bev Sorafenib Updated OS (n = 336)(n = 165) 12-mo OS 80 survival (%) 67% 180 (54) OS events, n (%) 100 (61) 18-mo OS 60 Median OS, mo 19.2 13.4 52% (17.0, 23.7) (95% CI) (11.4, 16.9) **Overall** : 40 Stratified HR 0.66 (0.52, 0.85) 409 (95% CI)^a $P = 0.0009^{b}$ 20

Updated Response and Duration of Response

	Updated analysis ^a					
	RECI	ST 1.1	HCC m	RECIST		
	Atezo + Bev (n = 326)	Sorafenib (n = 159)	Atezo + Bev (n = 325)	Sorafenib (n = 158)		
Confirmed ORR (95% CI), %	30 (25, 35)	11 (7, 17)	35 (30, 41)	14 (9, 20)		
CR, n (%)	25 (8)	1 (< 1)	39 (12)	4 (3)		
PR, n (%)	72 (22)	17 (11)	76 (23)	18 (11)		
SD, n (%)	144 (44)	69 (43)	121 (37)	65 (41)		
DCR, n (%)	241 (74)	87 (55)	236 (73)	87 (55)		
PD, n (%)	63 (19)	40 (25)	65 (20)	40 (25)		
Ongoing response, n (%)	54 (56)	5 (28)	58 (50)	6 (27)		
Median DOR (95% CI), mo ^b	18.1 (14.6, NE)	14.9 (4.9, 17.0)	16.3 (13.1, 21.4)	12.6 (6.1, 17.7)		

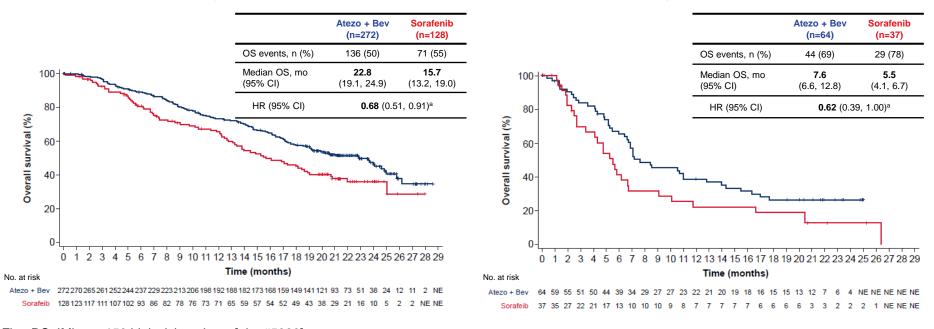

Cheng AL. J Hep. 2022.


Clinical cutoff: August 31, 2020; median follow-up: 15.6 mo. DCR, disease control rate.

^a Only patients with measurable disease at baseline were included in the analysis of ORR.

^b Only confirmed responders were included in the analysis of ORR and DOR.

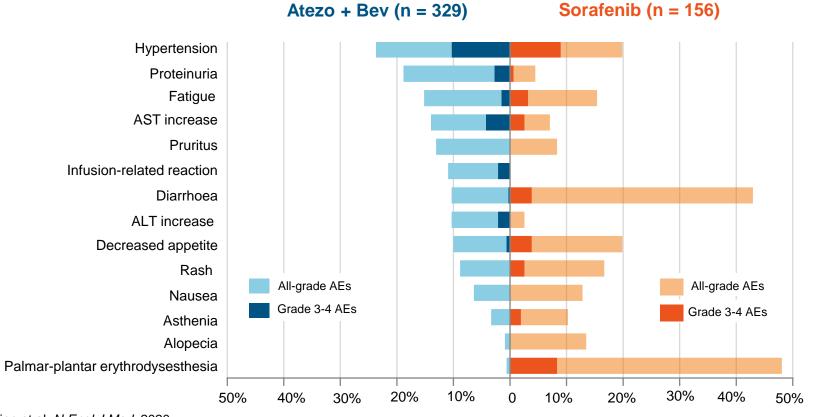
Best Response and OS From ImBrave 150



Ducreux et al. ASCO. 2021.

Overall Survival

Non-high-risk patients



Finn RS. IMbrave150 high-risk patients [abs #5080]. Clinical cutoff: August 31, 2020; median follow-up: 15.6 mo. NE, not evaluable.

^a OS analysis is descriptive.

https://bit.ly/3vjRqjk

TRAEs: ≥10% Any Grade in Either Arm

Sorafenib (n = 156)

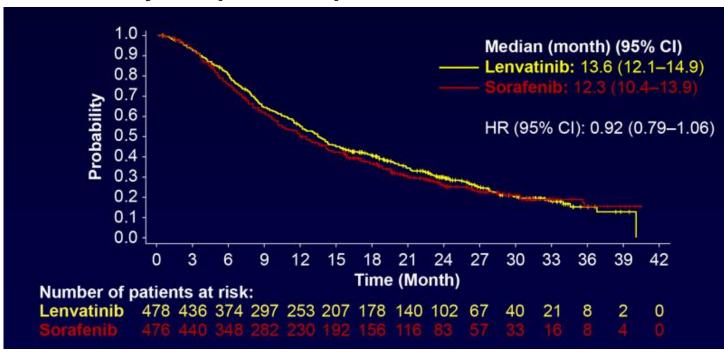
Finn et al. N Engl J Med. 2020.

Bleeding Events

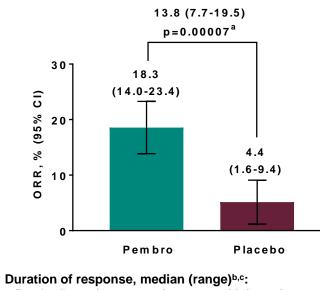
All-cause AESIs by medical concept and preferred term, n (%) ^a		+ Bev 329)	Sora (n =	fenib 156)
	All grade	Grade 3-4	All grade	Grade 3-4
Bleeding/haemorrhage	83 (25.2)	21 (6.4)	27 (17.3)	9 (5.8)
Bleeding events in > 1% of either group	0			
Epistaxis	34 (10.3)	0	7 (4.5)	1 (0.6)
Haematuria	10 (3.0)	1 (0.3)	0	0
Gingival bleeding	9 (2.7)	0	0	0
Oesophageal varices haemorrhage	8 (2.4)	6 (1.8)	1 (0.6)	1 (0.6)
Gastrointestinal haemorrhage	8 (2.4)	4 (1.2)	3 (1.9)	3 (1.9)
Rectal haemorrhage	5 (1.5)	1 (0.3)	3 (1.9)	0
Upper gastrointestinal haemorrhage	4 (1.2)	2 (0.6)	2 (1.3)	2 (1.3)
Haemoptysis	3 (0.9)	0	5 (3.2)	0
Peritoneal haemorrhage	0	0	2 (1.3)	1 (0.6)

SAEs ≥2% in Either Arm

n (%)	Atezo + Bev (n = 329)			Sorafenib (n = 156)		
	Any grade	Grade 3-4	Grade 5	Any grade	Grade 3-4	Grade 5
Gastrointestinal haemorrhage	8 (2.4)	4 (1.2)	3 (0.9)	3 (1.9)	3 (1.9)	0
Oesophageal varices haemorrhage	8 (2.4)	6 (1.8)	1 (0.3)	1 (0.6)	1 (0.6)	0
Pyrexia	7 (2.1)	3 (0.9)	0	2 (1.3)	1 (0.6)	0


Finn et al. N Engl J Med. 2020.

REFLECT Study



Primary Endpoint: Kaplan-Meier Estimate of OS

Kudo M, Finn RS, Qin S et al. Lancet. 2018.

KEYNOTE 240 Objective Response Rate at Final Analysis (RECIST 1.1, BICR)

Response n (%)	N=278	N=135
Best Overall Response		
CR	6 (2.2)	0 (0.0)
PR	45 (16.2)	6 (4.4)
SD	122 (43.9)	66 (48.9)
SD ≥23 wks	37 (18.3)	20 (14.8)
Progressive Disease	90 (32.4)	57 (42.2)
Disease Control Rate (CR+PR+SD)	173 (62.2)	72 (53.3)

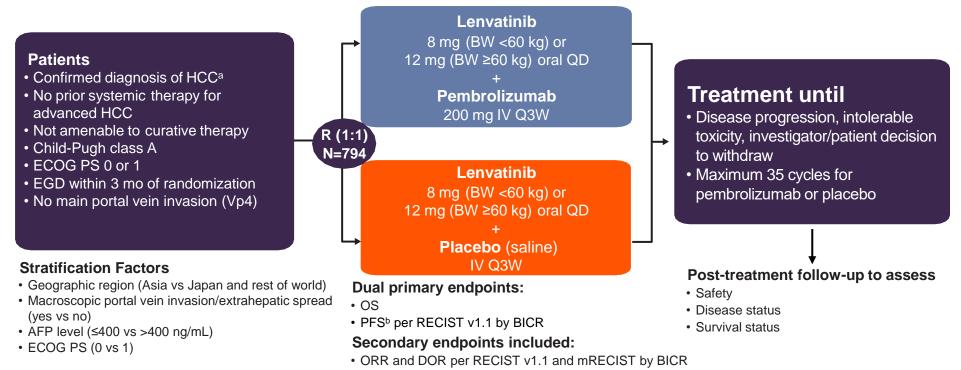
Dombrolizumal

Placab

Pembrolizumab: 13.8 mo (1.5+ mo - 23.6+ mo)
 Placebo: not reached (2.8 mo-20.4+ mo)

^aNominal one-sided P-value based on the Miettinen and Nurminen method stratified by randomization factors. ^bFrom product-limit (Kaplan-Meier) method for censored data. ^{c+}+" indicates no PD by the time of last disease assessment. Data cutoff: Jan 2, 2019. Finn et al. *J Clin Onc*. 2019.

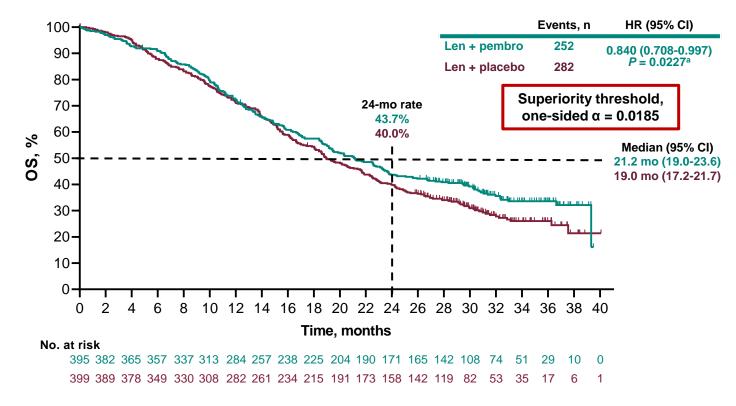
KEYNOTE-524: Lenvatinib+Pembrolizumab Efficacy Outcomes


Parameter	Lenvatinib + Pembrolizumab (N = 100)
	RECIST v1.1 per IIR
ORR (confirmed responses), n (%)	36 (36)
(95% CI) ^a	(26.6–46.2)
Best overall response, n (%)	
Complete response	1 (1)
Partial response	35 (35)
Stable disease ^b	52 (52)
Progressive disease	7 (7)
Unknown/not evaluable	5 (5)
Median DOR ^c for confirmed responders, months (95% CI) ^d	12.6 (6.9–NE)
Median TTR for confirmed responders, months (range)	2.8 (1.2–7.7)
Disease control rate, n (%) (95% Cl) ^a	88 (88) (80.0–93.6)

Percentage Change From Baseline in Sum of **Diameters of Target Lesions at Postbaseline Nadir** (IIR; RECIST v1.1) 60 4(% 20 Baseline, AAAAABS From -20 -30% -40 Change -50% -60 -75% -80 All HCC-1L (N = 100, m^a = 94) -100 -SEEE

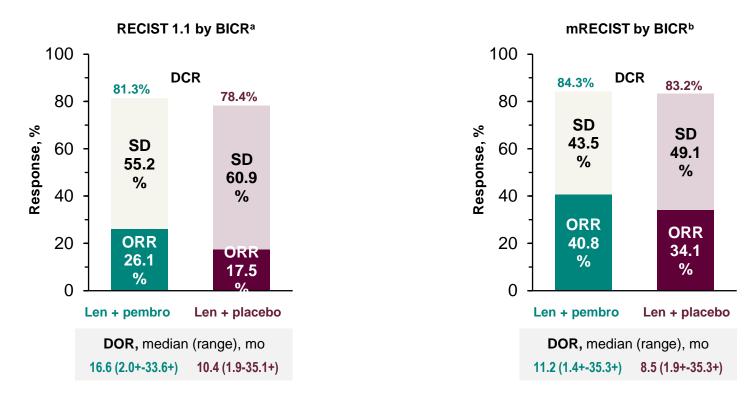
^aThe 95% CIs are calculated using an exact method of binomial distribution (Clopper– Pearson method); ^bincludes unconfirmed partial response, noncomplete response/ nonprogressive disease, and durable stable disease; ^othe Kaplan–Meier method was used for estimating DOR; ^dthe 95% CIs are based on a generalized Brookmeyer and Crowley method. ^am = number of patients with both baseline and postbaseline values for the sum of diameters of target lesions.

Finn et al. JCO. 2020.


LEAP-002 Study Design (NCT03713593)

Safety/tolerability

^aDiagnosis to be confirmed by radiology, histology, or cytology (fibrolamellar and mixed hepatocellular/cholangiocarcinoma subtypes are not eligible). Radiologic confirmation of diagnosis is provided by the study site. Clinically confirmed diagnosis of HCC (with liver mass ≥1 cm and arterial hypervascularity with washout in the venous phase seen with either triphasic CT or MRI) per American Association for the Study of Liver Diseases criteria. ^bRadiological imaging assessment performed Q9W.


Overall Survival, ITT, FA

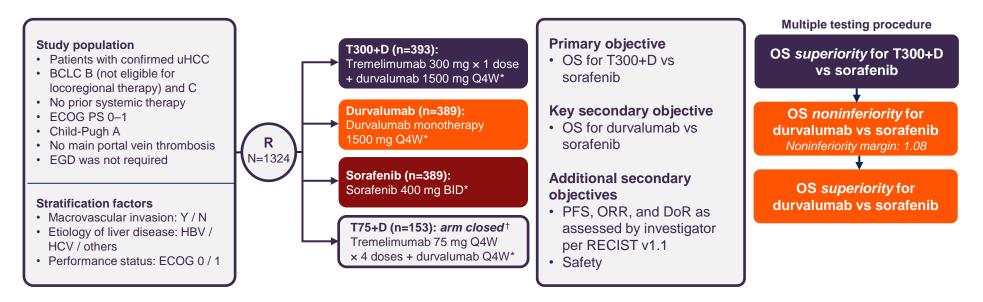
^aDid not reach superiority threshold, one-sided α =0.0185.

Data cutoff date for FA: 21 June 2022; median follow-up: 32.1 months.

Summary of Response and DOR, FA

^aCR=1.5% in both arms; PD=12.2% for len + pembro and 15.0% for len + placebo. ^bCR=9.4% for len + pembro and 9.5% with len + placebo; PD=9.4% for len + pembro and 10.3% for len + placebo. Data cutoff date for FA: 21 June 2022.

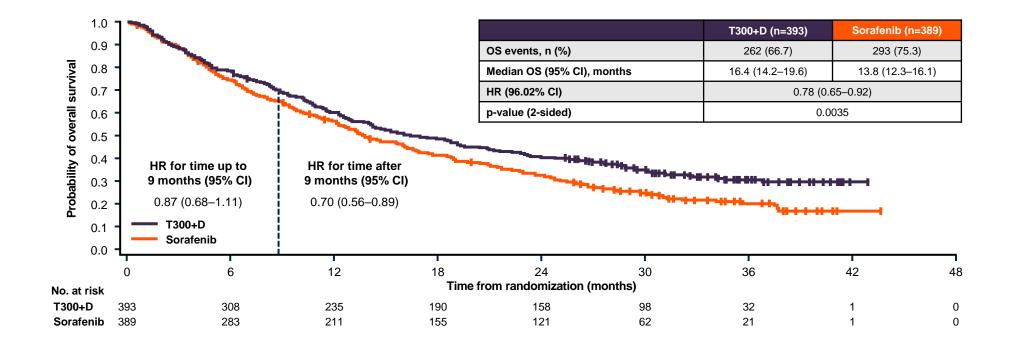
CheckMate -040: Nivolumab + Ipilimumab Efficacy Results¹


	Arm A NIVO1/IPI3 Q3W (n = 50)	Arm B NIVO3/IPI1 Q3W (n = 49)	Arm C NIVO3 Q2W/ IPI1 Q6W (n = 49)	$\begin{array}{c} 100 \\ 90 \\ 80 \end{array} \\ \end{array} Arm A mOS (95\% Cl) = 22.8 mo (9.4-NE) \\ \hline \\ Arm B mOS (95\% Cl) = 12.5 mo (7.6-16.4) \\ \hline \\ Arm C mOS (95\% Cl) = 12.7 mo (7.4-33.0) \end{array}$
ORR by BICR using RECIST v1.1, n (%)	16 (32)	15 (31)	15 (31)	70 -
BOR, n (%)				
CR	4 (8)	3 (6)	0	
PR	12 (24)	12 (24)	15 (31)	
SD	9 (18)	5 (10)	9 (18)	
PD	20 (40)	24 (49)	21 (43)	
Unable to determine	3 (6)	4 (8)	4 (8)	20 -
DCR, n (%)	27 (54)	21 (43)	24 (49)	10 -
Median TTR (range), months	2.0 (1.1–12.8)	2.6 (1.2–5.5)	2.7 (1.2–8.7)	0
Median DOR (range), months	17.5 (4.6 to 30.5+)	22.2 (4.2 to 29.9+)	16.6 (4.1+ to 32.0+)	0 3 6 9 12 15 18 21 24 27 30 33 36 39 Time, mo

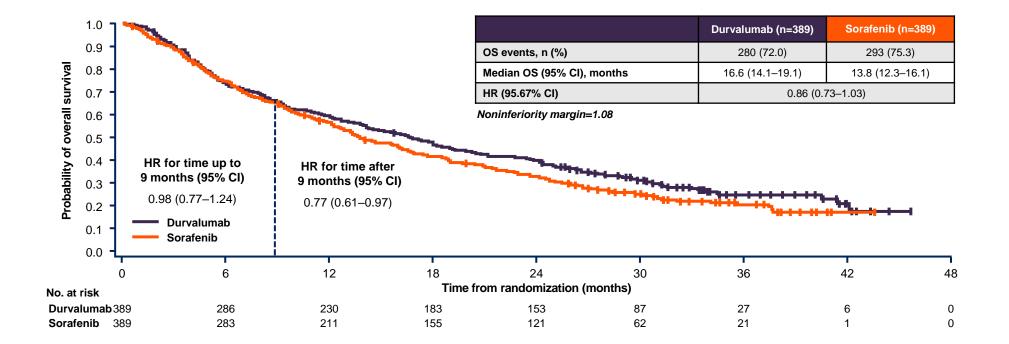
- Similar ORR, DCR, and DOR were observed across treatment arms
- Consistently high ORR (>30%) was achieved in all treatment arms
- In total, 7 patients had complete response (4 in arm A and 3 in arm B)
- Arm A: NIVO1/ IPI3 Q3W \times 4 followed by nivolumab 240 mg IV Q2W flat dose
- Arm B: NIVO3/ IPI1 Q3W × 4 followed by nivolumab 240 mg IV Q2W flat dose
- ORR is defined as CR + PR
- SD does not include 2 patients in arm A and 1 patient in arm B who were reported as non-CR/non-PD
- DCR is defined as CR + PR + SD + non-CR/non-PD

1. Yau T. JAMA Onc. 2020; 2. El-Khoueiry AB et al. ILCA. 2019. Abstract O-13.

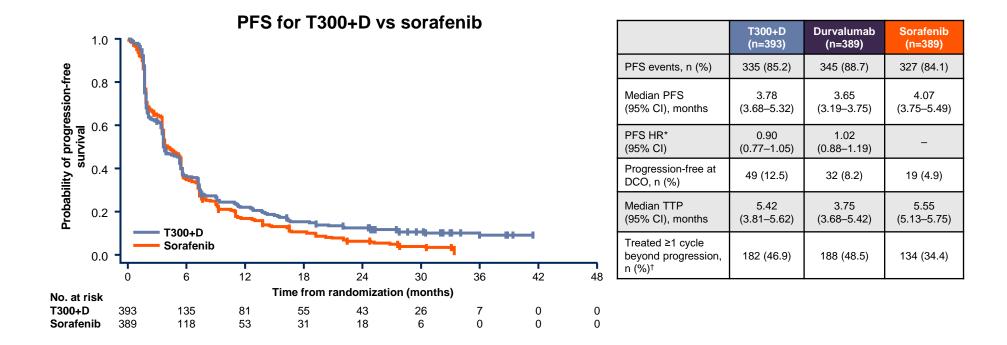
HIMALAYA Study Design


HIMALAYA was an open-label, multicenter, global, Phase 3 trial

*Treatment continued until disease progression. Patients with progressive disease who, in the investigator's opinion, continued to benefit from treatment and met the criteria for treatment in the setting of progressive disease could continue treatment. †The T75+D arm was closed following a preplanned analysis of a Phase 2 study. Patients randomized to this arm (n=153) could continue treatment following arm closure. Results from this arm are not reported in this presentation.


BID, twice a day; EGD, esophagogastroduodenoscopy; Q4W, every 4 weeks. Ghassan K Abou-Alfa, MD, MBA

Primary Objective: Overall Survival for T300+D vs Sorafenib


Data cut-off: August 27, 2021. Median duration of follow-up was 33.18 (95% CI, 31.74–34.53) months for T300+D and 32.23 (95% CI, 30.42–33.71) months for sorafenib. CI, confidence interval; HR, hazard ratio; OS, overall survival; T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W. Ghassan K Abou-Alfa, MD, MBA.

Secondary Objective: Overall Survival for Durvalumab vs Sorafenib

Data cut-off: August 27, 2021. Median duration of follow-up was 32.56 (95% CI, 31.57–33.71) months for durvalumab and 32.23 (95% CI, 30.42–33.71) months for sorafenib. CI, confidence interval; HR, hazard ratio; NI, noninferiority; OS, overall survival. Ghassan K Abou-Alfa, MD, MBA.

Progression-Free Survival

33

*Versus sorafenib. [†]Percent calculated from total patients in the safety analysis set: T300+D, N=388; durvalumab, N=388, sorafenib, n=374. CI, confidence interval; DCO, data cutoff; HR, hazard ratio; PFS, progression-free survival; T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W; TTP, time to progression. Ghassan K Abou-Alfa, MD, MBA.

Tumor Response

	T300+D (n=393)	Durvalumab (n=389)	Sorafenib (n=389)
ORR,* n (%)	79 (20.1)	66 (17.0)	20 (5.1)
CR, n (%)	12 (3.1)	6 (1.5)	0
PR, n (%)	67 (17.0)	60 (15.4)	20 (5.1)
SD,† n (%)	157 (39.9)	147 (37.8)	216 (55.5)
PD, n (%)	157 (39.9)	176 (45.2)	153 (39.3)
DCR, %	60.1	54.8	60.7
Median DoR, [‡] months 25 th percentile 75 th percentile	22.34 8.54 NR	16.82 7.43 NR	18.43 6.51 25.99
Median TTR (95% CI), months	2.17 (1.84–3.98)	2.09 (1.87–3.98)	3.78 (1.89–8.44)
Remaining in response, [‡] % 6 months 12 months	82.3 65.8	81.8 57.8	78.9 63.2

*By investigator assessment according to RECIST v1.1. Responses are confirmed. [†]Defined as neither sufficient decrease in sum of diameters to qualify for PR nor sufficient increase to qualify for PD. [‡]Calculated using Kaplan-Meier technique.

Cl, confidence interval; CR, complete response; DCR, disease control rate; DoR, duration of response; NR, not reached; ORR, objective response rate; PD, progressive disease; PR, partial response; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1; SD, stable disease; T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W; TTR, time to response. Ghassan K Abou-Alfa, MD, MBA.

Safety and Tolerability

Event, n (%)	T300+D (n=388)	Durvalumab (n=388)	Sorafenib (n=374)
Any AE	378 (97.4)	345 (88.9)	357 (95.5)
Any TRAE*	294 (75.8)	202 (52.1)	317 (84.8)
Any grade 3/4 AE	196 (50.5)	144 (37.1)	196 (52.4)
Any grade 3/4 TRAE	100 (25.8)	50 (12.9)	138 (36.9)
Any serious TRAE	68 (17.5)	32 (8.2)	35 (9.4)
Any TRAE leading to death	9 (2.3)†	0	3 (0.8)‡
Any TRAE leading to discontinuation	32 (8.2)	16 (4.1)	41 (11.0)

Includes AEs with onset or increase in severity on or after the date of the first dose through 90 days following the date of the last dose or the date of initiation of the first subsequent therapy.

*Treatment-related was as assessed by investigator. [†]Nervous system disorder (n=1), acute respiratory distress syndrome (n=1), hepatitis (n=1), myocarditis (n=1), immune-mediated hepatitis (n=2), pneumonitis (n=1), hepatic failure (n=1), myosthenia gravis (n=1). [‡]Hematuria (n=1), cerebral hematoma (n=1), hepatic failure (n=1).

AE, adverse event; SMQ, Standardized MedDRA Query; T300+D, tremelimumab 300 mg x 1 dose + durvalumab 1500 mg Q4W; TRAE, treatment-related adverse event. Ghassan K Abou-Alfa, MD, MBA.

Immune-Mediated Adverse Events

Event, n (%)	T300+D (n=388)				Durvalum	ab (n=388)		
	All grades	Grade 3 or 4	Received high-dose steroids	Leading to discontinuation	All grades	Grade 3 or 4	Received high-dose steroids	Leading to discontinuation
Patients with immune- mediated event	139 (35.8)	49 (12.6)	78 (20.1)	22 (5.7)	64 (16.5)	25 (6.4)	37 (9.5)	10 (2.6)
		-				-		
Hepatic events	29 (7.5)	16 (4.1)	29 (7.5)	9 (2.3)	26 (6.7)	17 (4.4)	25 (6.4)	5 (1.3)
Diarrhea/colitis	23 (5.9)	14 (3.6)	20 (5.2)	5 (1.3)	3 (0.8)	1 (0.3)	2 (0.5)	1 (0.3)
Dermatitis/rash	19 (4.9)	7 (1.8)	12 (3.1)	2 (0.5)	3 (0.8)	1 (0.3)	3 (0.8)	1 (0.3)
Pancreatic events	9 (2.3)	7 (1.8)	7 (1.8)	0	2 (0.5)	1 (0.3)	2 (0.5)	0
Adrenal insufficiency	6 (1.5)	1 (0.3)	1 (0.3)	0	6 (1.5)	3 (0.8)	3 (0.8)	0
Hyperthyroid events	18 (4.6)	1 (0.3)	2 (0.5)	0	4 (1.0)	0	0	0
Hypothyroid events	42 (10.8)	0	1 (0.3)	0	19 (4.9)	0	0	0
Pneumonitis	5 (1.3)	0	4 (1.0)	1 (0.3)	3 (0.8)	1 (0.3)	3 (0.8)	2 (0.5)
Renal events	4 (1.0)	2 (0.5)	3 (0.8)	2 (0.5)	0	0	0	0

Includes adverse events with onset or increase in severity on or after the date of the first dose through 90 days following the date of the last dose or the date of initiation of the first subsequent therapy. Patients may have had >1 event. Events include those that occurred in ≥1% of patients in either treatment arm.

T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W.

Ghassan K Abou-Alfa, MD, MBA.

FDA Approved Second Line Systemic Therapies

Study Name	Treatment	Median OS (mos)	Median PFS (mos)	ORR mRECIST;RE CIST	Grade 3/4 TRAEs	Most common G3/4	D/C rate
RESORCE	reografenib	10.6	3.1	11%/ 7%	50%	HTN 13% HFSR 13% Fatigue 13%	10%
CELESTIAL	cabozantinib	10.2	5.2	NR/ 7%	68% (all cause)	HFSR 17% HTN 16% Increased ALT 12%	16%
REACH-2 (AFP≥400)	ramucirumab	8.5	2.8	NR/ 5%	NR	HTN 8% Liver injury 4% Proteinuria 2%	11%
KEYNOTE 240/224 (accelerated approval)	pembrolizumab	13.9	3.0	NR/ 18.3%	18.3	Increased AST 13% Increased Bili 7.5% Fatigue 2.5%	6.5%
CheckMate 040, arm A (accelerated approval)	ipilimumab+ nivolumab	22.8	3.9	34%/ 32%	53%	Pruritis 45% Rash 29% Diarrhea 24%	22%

Bruix 2017, Abou-Alfa 2018, Zhu 2019, Finn 2020, Zhu 2018, Yau 2020. NR- not reported.

Proposed Sequencing Paradigm for Systemic Therapy in HCC

Bejjani and Finn. JCO Onc Practice. 2022.

Ongoing Phase 3 Trials of Adjuvant Immunotherapy¹⁻⁴

- High risk for HCC recurrence after resection or ablation
- Child–Pugh class A

U			
EMERALD-2	CheckMate-9DX	IMbrave050	KEYNOTE-937
 Durvalumab ± bevacizumab + vs placebo ECOG PS 0-1 Primary endpoint: RFS 	 Nivolumab vs placebo ECOG PS 0-1 Primary endpoint: RFS 	 Atezolizumab + bevacizumab vs active surveillance ECOG PS 0-1 Primary endpoint: RFS 	 Pembrolizumab vs placebo ECOG PS 0 AFP <400 ng/mL Primary endpoint: RFS and OS

1. https://clinicaltrials.gov/ct2/show/NCT03383458; 2. https://clinicaltrials.gov/ct2/show/NCT03867084; 3. https://clinicaltrials.gov/ct2/show/NCT03847428;

2. 4. https://clinicaltrials.gov/ct2/show/NCT04102098.

Ongoing Phase 3 Trials of Immunotherapy With LRT¹⁻⁴

- Unsuitable for curative therapy (eg, surgical resection, ablation, transplantation)
- Disease amenable to TACE; no metastasis

EMERALD-1	CheckMate -74W	LEAP-012	TACE-3
 Durvalumab ± bevacizumab + TACE vs TACE + placebo Child–Pugh A-B7 ECOG PS 0 or 1 Primary endpoint: PFS 	 Nivolumab ± ipilimumab + TACE vs TACE + placebo ECOG PS 0-1 Primary endpoint: OS and TTTP 	 Pembrolizumab + lenvatinib + TACE vs TACE + placebo Primary endpoint: PFS and OS 	 Nivolumab + TACE vs TACE Child-Pugh A ECOG PS 0-1 Primary endpoint: OS and TTTP

1. https://clinicaltrials.gov/ct2/show/NCT03383458; 2. https://clinicaltrials.gov/ct2/show/NCT03867084; 3. https://clinicaltrials.gov/ct2/show/NCT03847428;

2. 4. https://clinicaltrials.gov/ct2/show/NCT04102098.

Radioembolization for HCC

Radioembolization for Hepatocellular Carcinoma Using Yttrium-90 Microspheres: A Comprehensive Report of Long-term Outcomes

RIAD SALEM,*^{+,5} ROBERT J. LEWANDOWSKI,* MARY F. MULCAHY,[‡] AHSUN RIAZ,* ROBERT K. RYU,* SAAD IBRAHIM,* BASSEL ATASSI,* TALIA BAKER,^{\$} VANESSA GATES,* FRANK H. MILLER,* KENT T. SATO,* ED WANG,^{\$} RAMONA GUPTA,* AL B. BENSON,[‡] STEVEN B. NEWMAN,[‡] REED A. OMARY,* MICHAEL ABECASSIS,[‡] and LAURA KULIK^{II}

Radioembolization with Yttrium-90 Glass Microspheres in Hepatocellular Carcinoma: European Experience on Safety and Long-Term Survival

Philip Hilgard,¹ Monia Hamami,² Amr El Fouly,¹ André Scherag,³ Stefan Müller,² Judith Ertle,¹ Till Heusner,⁴ Vito R. Cicinnati,¹ Andreas Paul,⁵ Andreas Bockisch,² Guido Gerken,¹ and Gerald Antoch⁴

Survival After Yttrium-90 Resin Microsphere Radioembolization of Hepatocellular Carcinoma Across Barcelona Clinic Liver Cancer Stages: A European Evaluation

Bruno Sangro,¹ Livio Carpanese,² Roberto Cianni,³ Rita Golfieri,⁴ Daniele Gasparini,⁵ Samer Ezziddin,⁶ Philipp M. Paprotika,⁷ Francesco Fiore,⁸ Mark Van Buskirk,⁹ Jose Ignacio Bilhao,¹⁰ Giuseppe Maria Eurore,¹ Rita Salvaton,¹² Finanuela Giampalma,⁴ Onelio Geatti,¹³ Kai Wihelm,⁴⁴ Ralf Thorsten Hoffmann,⁷ Francesco Izzo,¹⁵ Mercedes Iñarrairaegui,¹ Carlo Ludovico Maini,¹⁶ Carlo Urigo,³ Alberta Cappelli,¹⁷ Alessandro Vit,⁹ Hojjat Ahmacadehára,⁶ Tohbar Franz Jakolos,⁷ and Secondo Laszoria,⁸⁶ on behalf of the European Network on Radioembolization with Yttrium-90 Resin Microspheres (ENRY)

Yttrium-90 Radioembolization for Intermediate-Advanced Hepatocellular Carcinoma: A Phase 2 Study

Vincenzo Mazzaferro, ¹ Carlo Sposito, ¹ Sherrie Bhoori, ¹ Raffaele Romito, ¹ Carlo Chiesa, ² Carlo Morosi, ³ Marco Maccauro, ² Alfonso Marchianò, ³ Marco Bongini, ¹ Rodolfo Lanocita, ³ Enrico Givelli, ³ Emilio Bombardieri, ² Tiziana Camerini, ⁴ and Carlo Spreafico³

Salem R, et al. *Gastroenterology*. 2010;138:52–64; Hilgard P, et al. *Hepatology*. 2010;52:1741–9; Sangro B, et al. *Hepatology*. 2011;54:868–78; Mazzaferro V, et al. *Hepatology*. 2013.

Institutional Decision to Adopt Y90 as Primary Treatment for Hepatocellular Carcinoma Informed by a 1,000-Patient 15-Year Experience

Riad Salem ^(D),¹⁻³ Ahmed Gabr ^(D),¹ Ahsun Riaz,¹ Ronald Mora,¹ Rehan Ali,¹ Michael Abecassis ^(D),³ Ryan Hickey,¹ Laura Kulik,⁴ Daniel Ganger,⁴ Steven Flamm,⁴ Rohi Atassi,¹ Bassel Atassi,¹ Kent Sato,¹ Al B. Benson,² Mary F. Mulcahy,² Nadine Abouchaleh,¹ Ali Al Asadi,¹ Kush Desai,¹ Bartley Thornburg,¹ Michael Vouche,¹ Ali Habib,¹ Juan Caicedo,³ Frank H. Miller,⁵ Vahid Yaghmai,⁵ Joseph R. Kallini,¹ Samdeep Mouli,¹ and Robert J. Lewandowski¹⁻³

- 1000 HCC patient, 15 year experience
- Overall Survival data, both censored and intention-to-treat
- Comprehensive review of data, AEs

Salem et al. Hepatology. 2018.

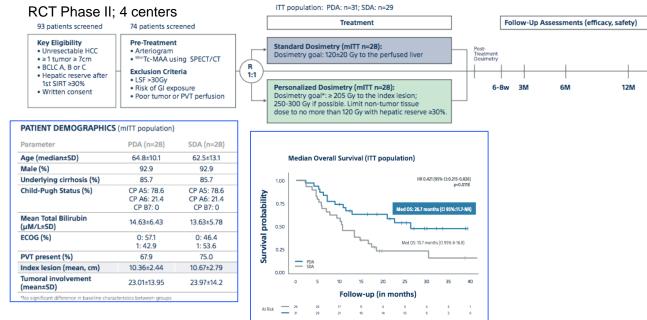

		N	OS (Censored*)		OS (ITT)			Transplanted	Resected	
CP	UNOS		Median (Months)	95% Cl	P Value	Median (Months)	95% CI	P Value	N (%)	N (%)
A	T1/T2	194	61	(37-80)	<0.0001	120	(80-120)	<0.0001	67 (35)	15 (8)
	Т3	102	35.7	(25-44)		39	(30-56)		10 (10)	15 (14.5)
	T4a	75	17	(11-22)		17	(13-24)		4 (5)	1 (1)
	T4b	92	11.3	(8-14)		12	(8.7-14.3)		5 (5)	1 (1)
	M/N	43	9	(7.8-13.0)		9	(7.8-13.0)		0 (0)	1 (2)
В	T1/T2	152	27	(20.3-30.0)	<0.0001	64	(32.8-118.0)	<0.0001	69 (45)	1 (0.5)
	T3	63	20	(14.7-35.0)		24.3	(15.0-46.7)		11 (17)	0 (0)
	T4a	65	11.5	(6.4-13.5)		11.8	(8.8-15.0)		4 (6)	0 (0)
	T4b	122	6.2	(4.8-7.6)		6.2	(4.8-7.6)		2 (2)	1 (1)
	M/N	48	4.3	(2.7-6.4)		4.3	(2.7-6.4)		0 (0)	0 (0)
С	T1/T2	22	NR		<0.0001	NR		<0.0001	12 (50)	0 (0)
	T3	4	14.8	_		14.8			1 (25)	0 (0)
	T4a	7	3.6	(1.6-4.6)		3.6	(1.6-16.0)		1 (14)	0 (0)
	T4b	9	2.5	(2.3-4.8)		2.5	(2.3-4.8)		0 (0)	0 (0)
	M/N	2	1.7	(1.7-2.3)		1.7	(1.7-2.3)		0 (0)	0 (0)
BCLC	Child Pugh									
Α	Α	158	47.3	(39.5-80.3)	<0.0001	102	(80-120)	0.005	49 (31)	16 (10)
	В	105	27	(21.0-30.2)		38	(29-118)		46 (44)	1 (1)
В	Α	91	25	(17.3-30.5)	0.037	30	(21.4-33.0)	0.2	9 (10)	5 (5)
	В	61	15	(12.3-19.0)		16	(12.6-24.5)		8 (13)	0 (0)
С	Α	257	15	(13.8-17.7)	<0.0001	16.6	(14.5-20.6)	<0.0001	28 (11)	12 (5)
	В	284	8	(6.8-9.5)		8.4	(6.8-10.0)		32 (11)	1 (0.5)
D	C [†]	30	4.6	(2.5-6.0)			_			0 (0)
	C^{\ddagger}	14	_	_		92% alive at 5 years	_		14 (31)	0 (0)

TABLE 4. Survival

*Censored to resection/LT; [†]Nontransplanted; [‡]Transplanted. Abbreviation: NR, not reached. Salem et al. *Hepatology*. 2018. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial

Etienne Garin*, Lambros Tselikas*, Boris Guiu, Julia Chalaye, Julien Edeline, Thierry de Baere, Eric Assenat, Vania Tacher, Corentin Robert, Marie Terroir-Cassou-Mounat, Denis Mariano-Goulart, Giuliana Amaddeo, Xavier Palard, Antoine Hollebecque, Marilyne Kafrouni, Hélène Regnault, Karim Boudjema, Serena Grimaldi, Marjolaine Fourcade, Hicham Kobeiter, Eric Vibert, Samuel Le Sourd, Lauranne Piron, Danièle Sommacale, Sophie Laffont, Boris Campillo-Gimenez, Yan Rolland, on behalf of the DOSISPHERE-01 Study Group†

Y90: Personalization Matters

Garin et al. Lancet Gastroenterol Hepatol. 2022.

- We have made tremendous progress in improving the survival of patients with advanced HCC
- The introduction of IO in the front-line setting is practice changing
- Not every patient will be a candidate for IO combinations
 - Consider TKIs or single agent IO
- Recent data with single-agent TKI (LEAP 002/lenvatinib) demonstrates a clinically meaningful change in the natural history of HCC with OS
- Studies evaluating the role of IO in earlier stage disease are ongoing

Acknowledgements:

- Ronald Busuttil MD, PhD
- Saeed Sadeghi, MD
- Seong Kim, NP
- Hepatology (Choi, Durazo, Han, Saab, Tong)
- IR (Gomes, Lu, McWilliams, Padia, Raman)
- Surgery (Agopian, DiNorcia, Farmer, Kaldas)
- Liver Cancer Research Team: Kathy Hillburn, Lia Ethridge, Natasha Uhl, Rose Estrada, Alexia Hunt, Hayley Cuevas