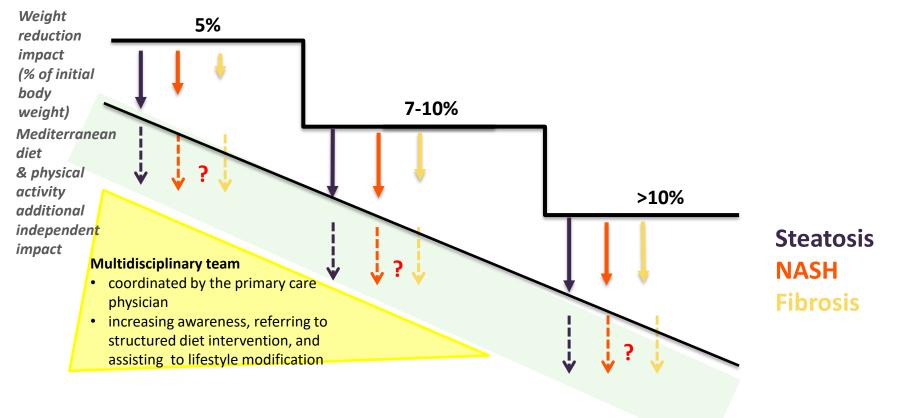
Lifestyle Intervention Diet & Exercise

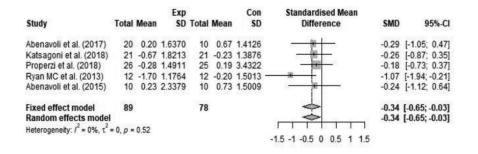
Shira Zelber-Sagi R.D. Ph.D School of Public Health, Haifa University Tel Aviv Medical Center Israel


בית הספר לבריאות הציבור School of Public Health مدرسة الصحّة العامّة

הפקולטה למדעי הרווחה והבריאות

CLDF Chronic Liver Disease Foundation 3RD ANNUAL IVER CONFERENCE

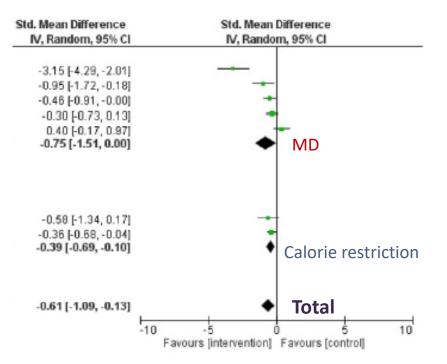
The dose-response effect of weight reduction on features of NAFLD and the added independent impact of the Mediterranean diet and physical activity


Wai-Sun Wong V., Liver International 2022

Effects of Mediterranean Diet on Patients with NAFLD Meta-Analysis of RCTs

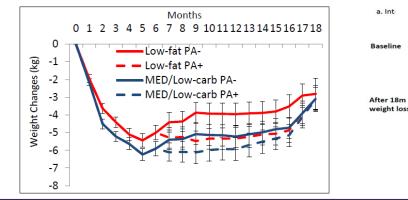
Fatty liver index

Study	Total Mea	Exp n SD	Total	Mean	Con SD		ardised Mea ifference	n SMD	95%-CI
Abenavoli et al. (2017)		7 18.2461	10		10.7758		t		[-2.23; -0.53]
Abenavoli et al. (2015) Misciagna et al. (2017)		0 20.0475 1 25.9996	10 46		10.5959 19.0172	· .			[-2.77; -0.65] [-0.79; 0.04]
Fixed effect model	74		66			V		-0.70	[-1.05; -0.34]
Random effects model Heterogeneity: $l^2 = 76\%$, t	 Control Control C	0.02				r	>	-1.06	[-1.95; -0.17]
						-2 -1	0 1	2	

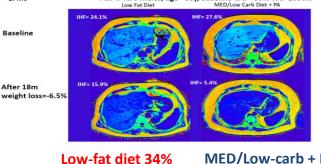

HOMA-IR

- Study duration: 6 weeks to 6 months
- Intervention arms: Med-Diet vs. no intervention or other diets such as low fat diets

Mediterranean diet and calorie restriction in NAFLD Meta-analysis of RCTs and CCTs


Liver stiffness measurement (LSM)

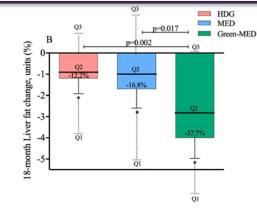
Haigh L., Clinical Nutrition 2022


Effect of different types of Mediterranean diets on liver fat **RCTs**

18-month, 278 obese adults

Intrahepatic fat

Pair I. Two males, age =58v, baseline VAT= 33% WC=108cm

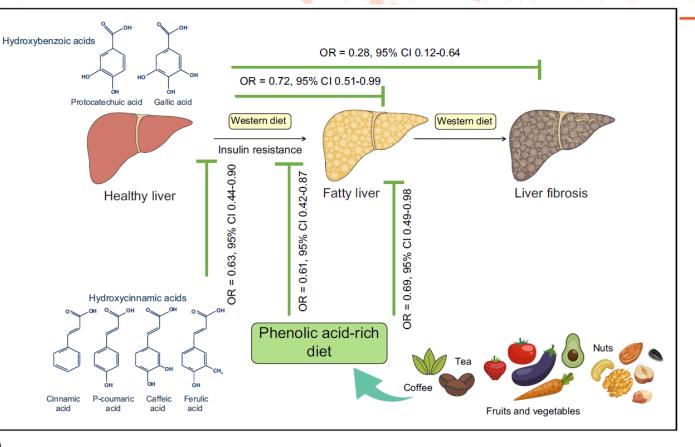


MED/Low-carb + PA 80%

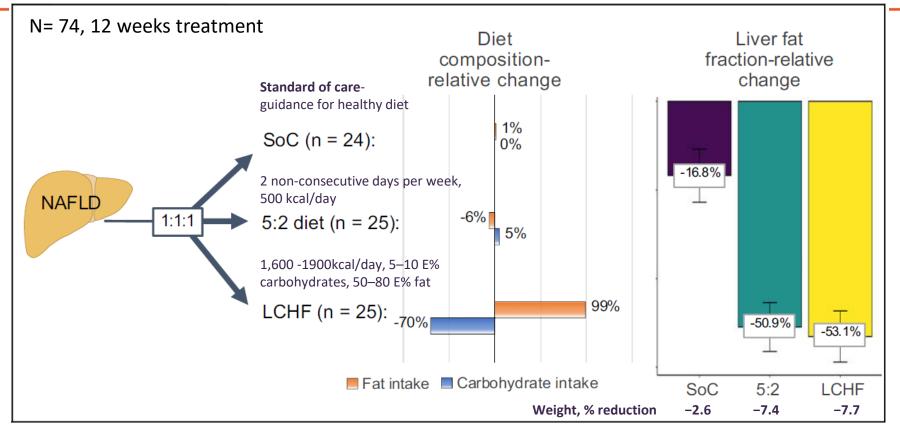
•

Gepner Y., Circulation 2017

18-month, 294 obese adults 18 m6m 18-month weight change (kg) p=0.01 -2p<0.001 p<0.001 for both HDG healthy dietary guidelines MED Green-MED

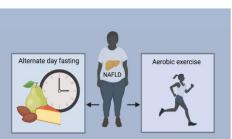


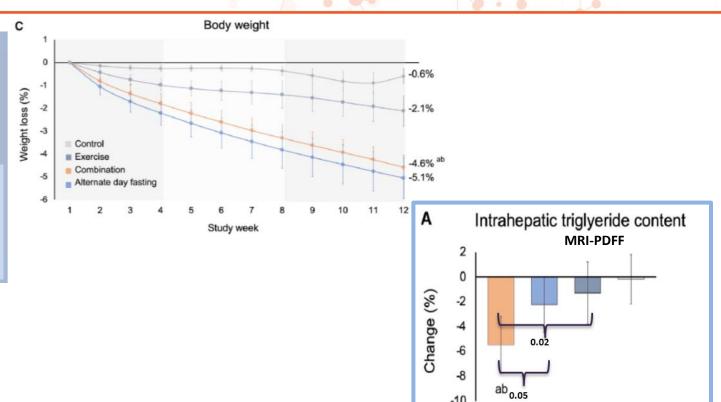
- Green-Mediterranean diet enriched with green plants and polyphenols
 - green tea (3–4 cups/day)
 - Mankai (aquatic plant strain) green shake


Yaskolka Meir A., Gut 2021

Higher phenolic acid intake independently associates with a lower prevalence of insulin resistance and NAFLD

- Cross-sectional study, n= 789
- AUS
- FibroTest
- HOMA
- Phenolic acid content of food calculated by Phenol-Explorer


Treatment of NAFLD with intermittent calorie restriction or low-carb high-fat diet RCT


Holmer M., JHEP Reports 2021

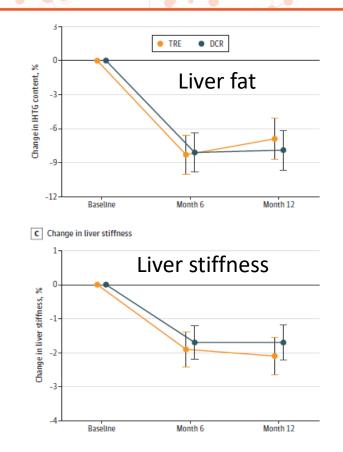
Lindqvist C., Nutrition 2023

Effect of alternate day fasting with aerobic exercise on NAFLD 12-weeks RCT

- Adults with obesity and NAFLD (n = 80)
- ADF- 600 kcal "fast day" / ad • libitum intake "feast day"
- Moderate-intensity aerobic ٠ exercise, 5 session/w/60min

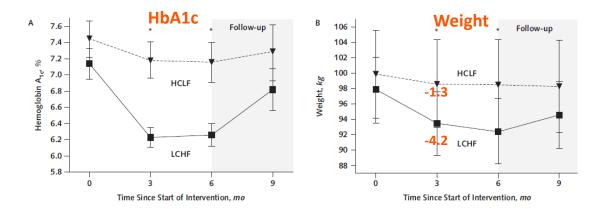
-10

COMB

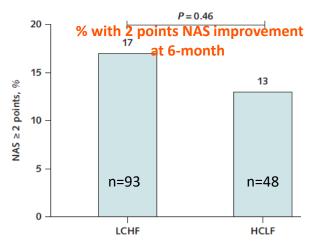

EXC

ADF

CON

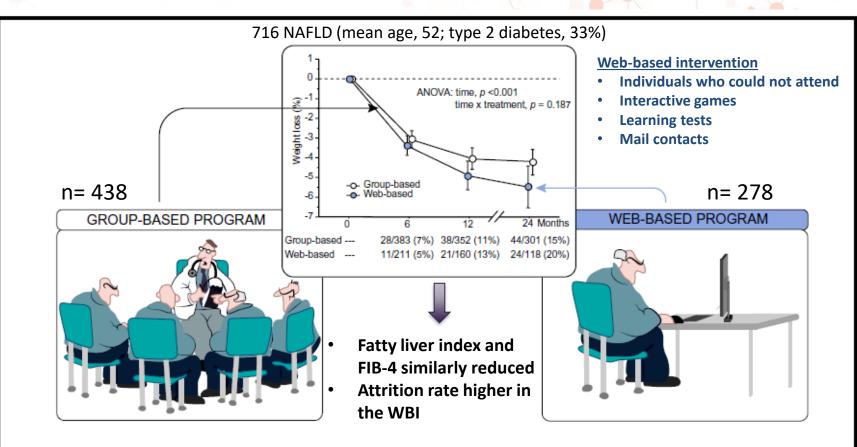

Effects of Time-Restricted Eating on NAFLD RCT

- 12-month, n=88
- TRE (eating only between 8:00 AM and 4:00 PM)
- DCR (habitual meal timing)
- All participants were instructed to maintain a diet of 1500 to 1800 kcal/d for men and 1200 to 1500 kcal/d for women

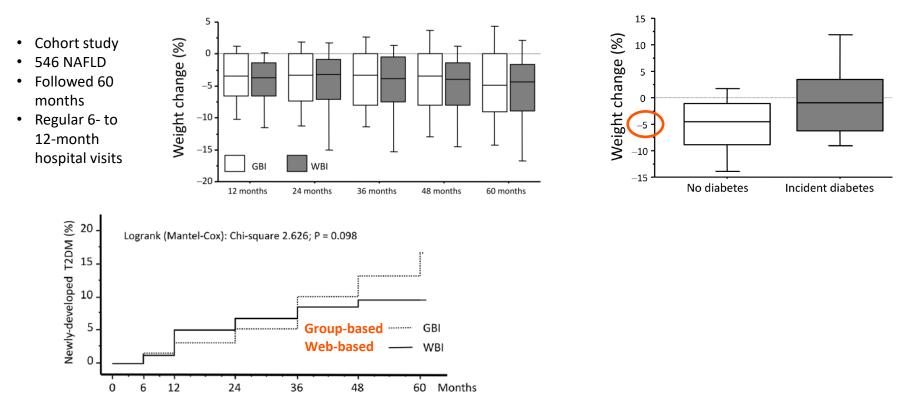


Effect of Calorie-Un restricted Diets on Type-2 Diabetes and NAFLD 6-months RCT

- 165 participants with T2DM
- Two calorie-unrestricted diets
 - LCHF diet 50-60 E% fat, <20 E% carbs
 - HCLF diet 50-60 E% carbs, 20-30 E% fats
 - In practice: reduced 100-200 Kcal/day

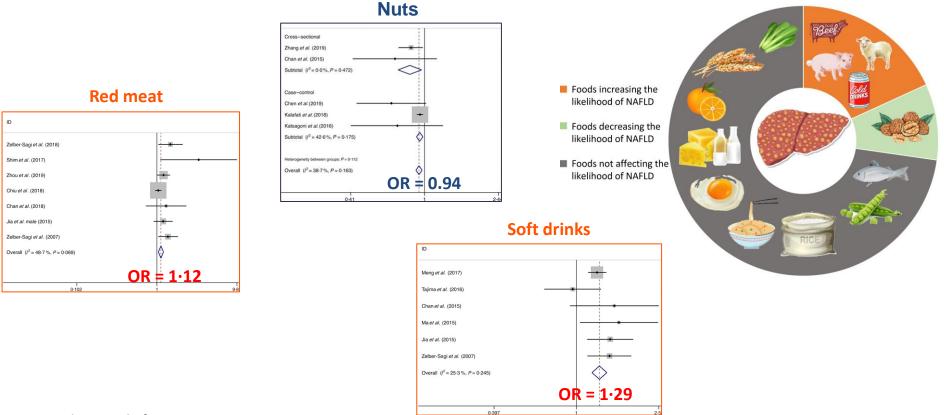


• More participants in the LCHF group than in the HCLF group had a 1 or more point improvement in NAS



Hansen CD., Annals of Internal Medicine 2022

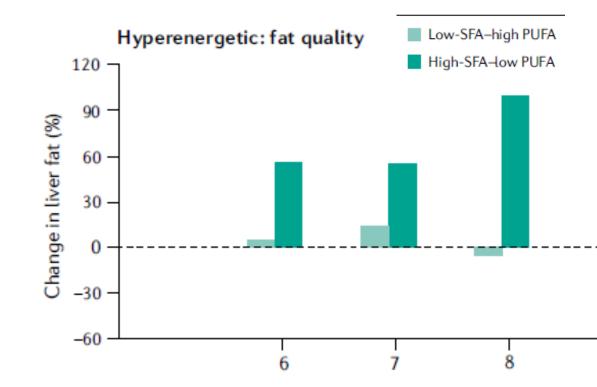
An internet-based approach for lifestyle changes in NAFLD



Long-Term Diabetes Incidence in Subjects Treated by Web- and Group-Based Programs

Petroni ML., Nutrients 2023

Food groups and the likelihood of NAFLD: meta-analysis of crosssectional and case-control studies


He K., British Journal of Nutrition 2020

Differential effects of dietary saturated and unsaturated fats on liver fat content

 Short-term (couple of weeks) randomized trials

Saturated fat consistently increase IHTG more than polyunsaturated or monounsaturated fat

The evidence supports the Mediterranean diet low in saturated fat high in monounsaturated fat

Yki- Järvinen H., Nature Reviews Gastroenterology & Hepatology 2021

Ultra-processed food (UPF)

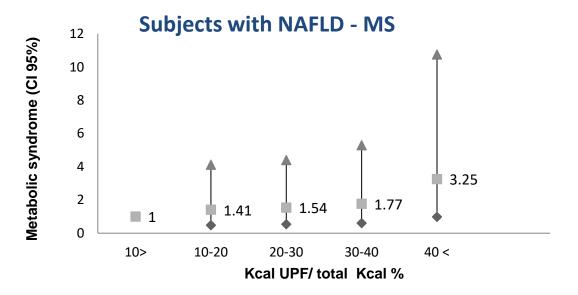
Industrial processes

Packaging with plastic and other synthetic materials

Highly profitable (low-cost ingredients, long shelf life) Hyper-palatable

Low nutritional quality, contains **many ingredients** (≥5), and **preservatives**

https://harvardpublichealth.org/nutrition/processed-foods-make-us-sick-its-time-for-

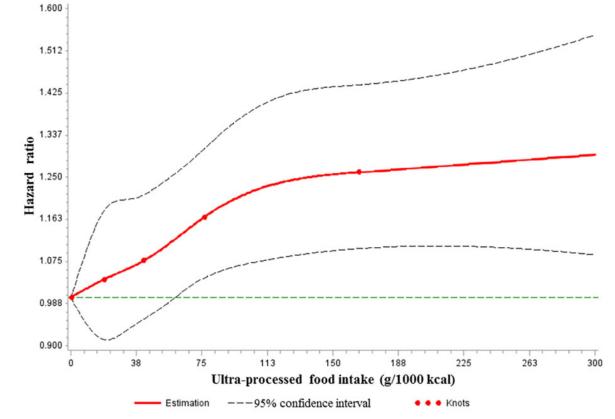

Monteiro CA., FAO 2019

government-action/

Martinez S., Popul Health Metr 2017

Dose-response association between UPF consumption and metabolic syndrome

- Cross-sectional study, n=789 Liver US
- UPF defined by NOVA classification


Adjusted for: age, gender, BMI, saturated fatty acids and protein intake, physical activity, coffee and fibers

Ivancovsky-Wajcman D., & Zelber-Sagi S., Liver International 2021

Dose-response association between ultra-processed food consumption (g/1000 kcal) and risk of NAFLD

- Prospective cohort study
- N=16,168
- NAFLD defined by US

Adjusted for age, sex, BMI, smoking, alcohol, education, income, physical activity, total energy intake, healthy diet score, hypertension, hyperlipidaemia and diabetes

Zhang S., International Journal of Epidemiology 2022

Association between ultra-processed foods consumption and risk of NAFLD: A population-based analysis of NHANES 2011–2018

- 6545
 participants
- UPF by NOVA food classification

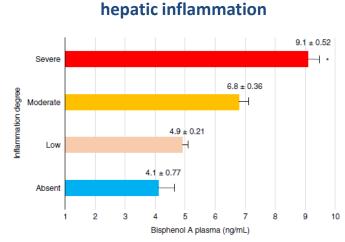
D

+

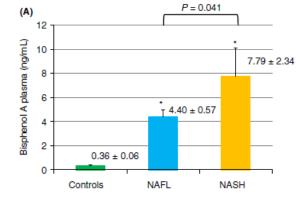
• Liver US

Quartiles (UPF% of total weight)							
Adjustment	Q4 (>68) <i>vs.</i> Q1 (< 42) (ref)						
emographics, education, smoking, BMI	1.83 (1.33–2.53)						
Healthy Eating Index (HEI)	1.60 (1.15–2.23)						
added sugar	1.82 (1.27–2.61)						
saturated fat	1.80 (1.30–2.48)						
refined grains	1.78 (1.29–2.45)						

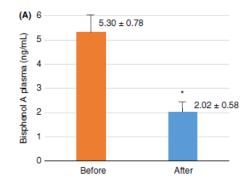
Role of bisphenol A as an environmental factor in the promotion of NAFLD


- An endocrine-disrupting chemical associated with T2DM, CVD and liver abnormalities
- A building block of **plastics** and of the lining in **food and beverage containers**
- Disrupts pancreatic b-cells function and whole-body glucose homeostasis

Dallio M., Aliment Pharmacol Ther 2018


Role of bisphenol A as an environmental factor in the promotion of NAFLD

 N=60, NAFLD with histological diagnosis vs. controls



Bisphenol A plasma levels and

Bisphenol A plasma levels

Bisphenol A levels before and after bisphenol A free-diet for 1 month

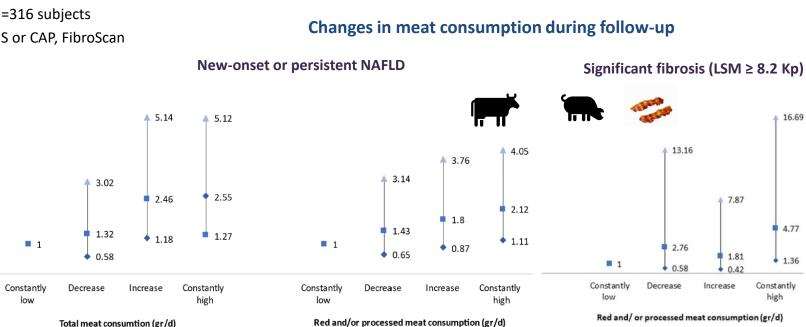
Dallio M., Aliment Pharmacol Ther 2018

High meat consumption is prospectively associated with risk of NAFLD and presumed significant fibrosis

- Prospective cohort, 6.8 y followup
- N=316 subjects

New onset / persistence of NAFLD (CI %95)

5


4

3

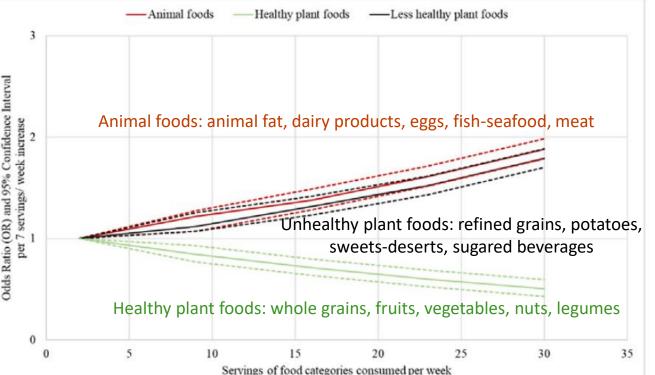
2

1

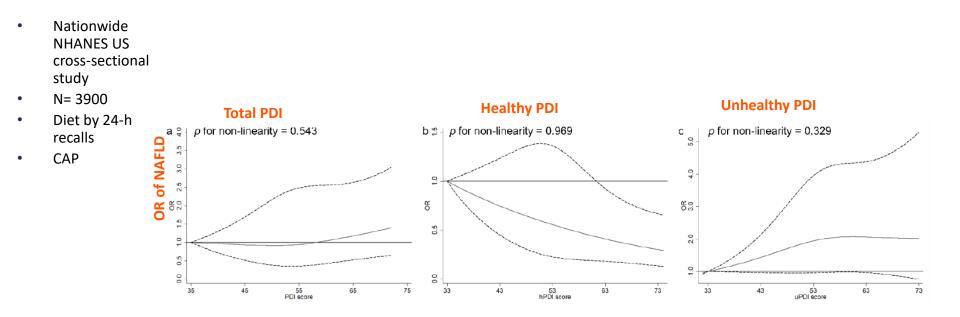
US or CAP, FibroScan .

Adjusted for baseline age (years), gender, BMI (Kg/m2), energy, (Kcal), protein (% total Kcal), and cholesterol intake (mg/day)

Ivancovsky-Wajcman D., Nutrients 2022


Quality of plant-based diets is associated with liver steatosis

- Greek cohort, n=3042,
- Cross-sectional analysis
- hepatic steatosis index (HSI)


Adjusted for: education, smoking, physical activity, alcohol, energy intake, waist circumference, DM, HTN, hyper-chol

Odds of having NAFL

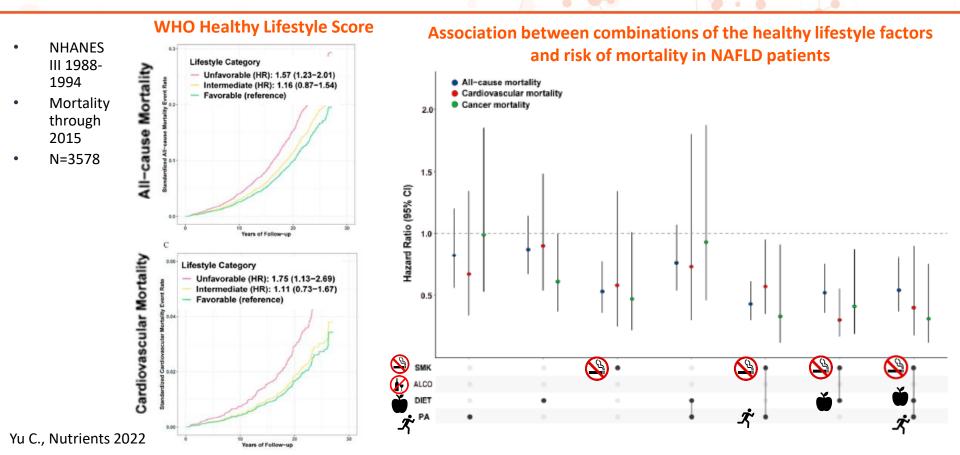
A Healthful Plant-Based Diet Index (PDI) Is Associated with Lower Odds of NAFLD

Li X., Nutrients 2022

Adjusted for: poverty, race/ethnicity, energy, marital status, education, smoking, alcohol, diabetes, physical activity, BMI

Lifestyle and NAFLD: an umbrella review of observational studies and RCTs

Exposure	Measure	Studies	Subjects	Cases	Random effect model	Effect sizes (95% CI)	I ² (%)
		(n)	(n)	(n)			
Smoking	NAFLD	20	92125	20149	i≁-	OR, 1.43 (1.02, 1.84)	98.50
Passive smoking	NAFLD	2	NA	NA	i +	OR, 1.32 (1.16, 1.50)	59.41
Former smoking	NAFLD	4	2210	784	 ←	OR, 1.38 (1.20, 1.59)	0.00
Sugar sweetened beverages	NAFLD	4	5241	1150	¦→–	OR, 1.40 (1.07, 1.82)	31.00
Sugar-Sweetened Soda	NAFLD	7	4639	NA	+	RR, 1.53 (1.34, 1.75)	0.00
Soft drinks	NAFLD	7	32788	9947	+	OR, 1.33 (1.18, 1.49)	23.11
Hypercaloric fructose diet	IHLC	6	NA	NA	⊢	OR, 1.13 (1.02, 1.45)	0.00
Red meat	NAFLD	8	NA	8115	¦ ≁	OR, 1.26 (1.08, 1.47)	63.73


Higher Adherence to Healthy Lifestyle Score Is Associated with Lower Odds of NAFLD

- Nationwide U.S. NHANES, cross-sectional study
- **HLS**: dietary pattern, BMI, physical activity, smoking, and sleep duration
- CAP and LSM

Stratified analysis: association between HLS and NAFLD

Subgroup	OR forest plot for HLS (High vs. Low)						
Age, years							
18-39		0.12 (0.07 ~ 0.21)					
40-59		0.39 (0.24 ~ 0.64)					
≥60		0.29 (0.19 ~ 0.45)					
Sex							
Male		0.20 (0.13 ~ 0.29)					
Female		0.32 (0.21 ~ 0.46)					
Race/ethnicity							
Non-Hispanic white		0.33 (0.21 ~ 0.52)					
Non-Hispanic black		0.32 (0.17 ~ 0.63)					
Other races		0.19 (0.12 ~ 0.30)					
Education level							
Less than high school		0.38 (0.19 ~ 0.77)					
High school diploma		0.18 (0.10 ~ 0.32)					
More than high school	—	0.25 (0.17 ~ 0.36)					
Famliy income to poverty ratio	1						
<1.30		0.35 (0.21 ~ 0.60)					
1.30-3.49		0.28 (0.18 ~ 0.42)					
≥3.50		0.16 (0.10 ~ 0.27)					
Hypertension							
No		0.18 (0.12 ~ 0.27)					
Yes	1. 	0.40 (0.26 ~ 0.59)					
Diabetes							
No		0.25 (0.18 ~ 0.34)					
Yes		0.29 (0.15 ~ 0.53)					
	0.2 0.4 0.6 0.8	1					

Healthy Lifestyle Is Associated with Reduced Mortality in Patients with NAFLD

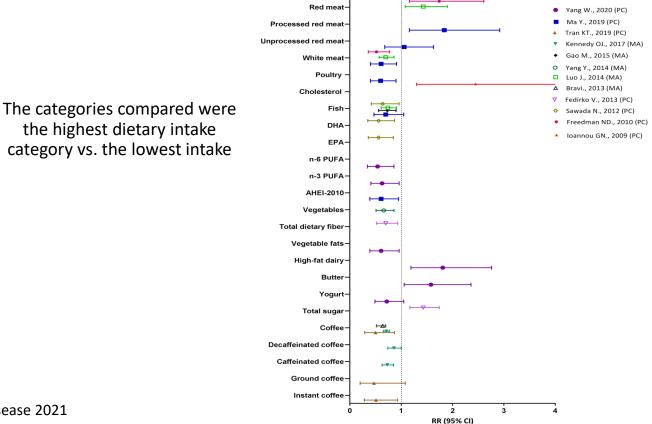
Coffee Consumption Is Associated With Lower Liver Stiffness: A Nationally Representative Study

- 4510 subjects from the 2017 to 2018 NHANES cross-sectional study
- TE & CAP

	Advanced fibrosis LSM ≥9.5	5 kPa, model 1	CAP, dB/	m, model 2
Characteristic	OR (95% CI) ^a	P	Coef. (95% CI) ^b	Р
Coffee (ref. = nondrinkers)				
<1 cup	2.5 (0.8–7.5)	.1	0.7 (-9.9 to 11.2)	.8
1–2 cups	1.0 (0.5–1.9)	.9	-0.1 (-5.9 to 5.7)	.9
2–3 cups	1.1 (0.5–2.5)	.7	-3.7 (-10.0 to 2.5)	.2
>3 cups	0.5 (0.2–0.9)	.03	3.3 (-2.1 to 8.6)	.2

Adjusted for: age, sex, race, vigorous activity, alcohol consumption in the past year, smoking history, BMI, and education level

Niezen S., Clinical Gastroenterology and Hepatology 2022


Meta-analyses of coffee consumption impact on NAFLD and liver fibrosis

 11 studies, varying designs

Study	TE seTE	Risk Ratio	RR		Weight (fixed)	Weight (random)	
		: 11			((
i elect	ation1						
Zelber-sagi et al.	-0.33 0.4817 -		0.72	[0.28; 1.85]	0.1%	2.8%	
Funatsu et al.	-0.30 0.0992		0.74	[0.61; 0.90]	2.5%	11.3%	
Imatoh et al.	-0.53 0.2256		0.59	[0.38; 0.92]	0.5%	7.2%	
D Catalano et al.	0.02 0.1556		1.02	[0.75; 1.38]	1.0%	9.4%	
V Wendy et al.	0.00 0.0484	i it	1.00	[0.91; 1.10]	10.5%	12.6%	
C RUHL et al.	-0.80 0.1244		0.45	[0.35; 0.57]	1.6%	10.4%	
Birerdinc et al.	-0.07 0.0175		0.93	[0.90; 0.96]	80.0%	13.0%	
Fixed effect model		¢.	0.02	10 00 0 051	06.2%		
Random effects mode		\Leftrightarrow	Pooled	RR valu	e 0.77	7 (95%	CI 0.60–0.98)
Heterogeneity: $I^2 = 87\%$	$\tau^2 = 0.0846, p < 0$.01	looled			(33)0	
Liver fibrosi	S 2						
Zelber-sagi et al.	-0.39 0.1371		0.68	[0.52; 0.89]	1.3%	10.0%	
Anty et al.	-0.29 0.1312	<u> </u>	0.75	[0.58; 0.97]	1.4%	10.2%	
Bambha et al.	-0.45 0.1655	l	0.64	[0.46; 0.89]	0.9%	9.1%	
Soleimani et al	-0.97 0.3647	!l	0.38	[0.19; 0.78]	0.2%	4.2%	
Fixed effect model		\diamond		[0.58; 0.79]	3.8%		
Random effects mode	1						•
Heterogeneity: $I^2 = 7\%$,		0.36	Pooled	RR 0.68	8 (95%	% CI 0.6	58–0.79)
Fixed effect model Random effects model Heterogeneity: $I^2 = 84\%$ Residual heterogeneity:	$r_{0}, \tau^{2} = 0.0624, p < 0$.01 0.5 1 2		[0.88; 0.94] [0.61; 0.87]	100.0% 	 100.0%	

Hayata U., Annals of Hepatology 2021

Lifestyle parameters related with risk for HCC, in large prospective cohort studies and meta-analyses

Zelber-Sagi S., Seminars in Liver Disease 2021

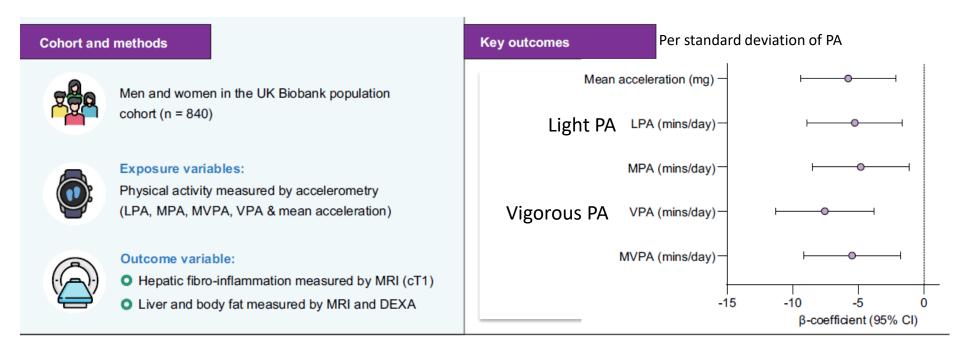
Effect of exercise <u>alone</u> on intrahepatic lipids Meta-analysis of RCTs

 Effect of exercise alone compared to the control group of conventional treatment

	Exp	eriment	tal	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
11.5.1 H-MRS									
Cheng, 2017	12.2	9.47	22	18.8	7.64	18	4.6%	-6.60 [-11.90, -1.30]	
Cuthbertson, 2016	14.87	16.06	30	27.08	14.76	20	1.7%	-12.21 [-20.86, -3.56]	
Hallsworth, 2011	12.2	9	11	11.5	7.4	8	2.4%	0.70 [-6.69, 8.09]	
Hallsworth, 2015	7.8	2.4	12	10.4	3.9	11	18.0%	-2.60 [-5.27, 0.07]	
Pugh, 2014	18	11.58	13	19.8	8.737	8	1.7%	-1.80 [-10.53, 6.93]	
Shojaee-Moradie, 2016	10.68	9.73	15	16.29	14.17	12	1.5%	-5.61 [-15.02, 3.80]	
Zhang, 2016	-4.59	9.199		-0.7	6.906		26.1%	-3.89 [-6.11, -1.67]	
Subtotal (95% CI) Heterogeneity: Chi ² = 7.2			238			150	55 .9 %	-3.74 [-5.26, -2.22]	•
11.5.2 MRI									
Abdelbasset, 2019	10.1	1.3	16	11.1	5.1	16	19.3%	-1.00 [-3.58, 1.58]	
Abdelbasset W, 2020	10.5	1.5	15	11.1	5.2	16	18.2%	-0.60 [-3.26, 2.06]	
Houghton, 2016	10	6	12	11	5	12	6.6%	-1.00 [-5.42, 3.42]	
Subtotal (95% CI)			43			44	44.1%	-0.84 [-2.54, 0.87]	•
Heterogeneity: Chi ² = 0.0	05, df =	2 (P = 0)).97); l ²	= 0%					
Test for overall effect: Z	= 0.96 (I	P = 0.34	4)						
Total (95% CI)			281			194	100.0%	-2.46 [-3.59, -1.33]	◆
Heterogeneity: Chi ² = 13	.51, df =	= 9 (P =	0.14);	$1^2 = 339$	6				-20 -10 0 10
Test for overall effect: Z	= 4.25 (P < 0.00	001)						Favours [experimental] Favours [control]
Test for subgroup differe	ences: Ch	$1i^2 = 6.2$	22, df =	= 1 (P =	0.01), 1	$^{2} = 83.$	9%		ravours [experimental] Tavours [control]

NAFLD and significant fibrosis by meeting leisure-time physical activity guideline

- A cross-sectional, 2017–2018 U.S NHANES, n= 4304
- TE & CAP
- PA questionnaire


>300 min/w was more pronounced for both NAFLD and fibrosis

NAFLD prevention	OR (95%CI)	Р
No	1	
Yes >150 min/w	0.64 (0.50–0.81)	0.001
Sitting time Q4 (8 h/d)	1.44 (1.01–2.05)	0.045
Significant Fibrosis prevention		
No	1	
Yes >150 min/w	0.55 (0.35–0.87)	0.013
Cirrhosis prevention		
No	1	
Yes >300 min/w	0.42 (0.24–0.73)	0.005

Multivariable model adjusted for age, sex, race/ethnicity, education level, smoking, alcohol hypertension, diabetes, waist circumference

Kim D., Clinical Gastroenterology and Hepatology 2022

Physical activity is inversely associated with hepatic fibroinflammation: A population-based cohort study- UK Biobank data

Sherry AP., JHEP Reports 2023

Association of Physical Activity With Risk of Liver Fibrosis & Sarcopenia in NAFLD

- Retrospective health screening study
- 11,690 NAFLD subjects
- Liver fibrosis- FIB-4>2.67, FibroScan-AST score>0.35
- Sarcopenia- BIA
- Coronary artery calcium (CAC) score

Multivariate analysis for fibrosis by FAST

Amounts of physical activity

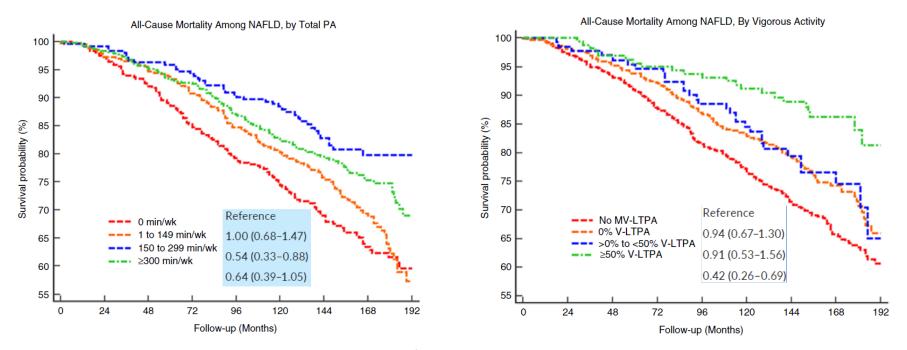
Lowest quartile	1.00 (reference)					
Second quartile	0.57 0.31-1.02 .06	0				
Third quartile	0.37 0.19-0.73 .00	4				
Highest quartile	0.32 0.16-0.66 .00	2				

FIB-4

Subgr		No. of subjects (%)	FIB-4>2.67 (%)		Subgr	oups	No. of subjects (%)	Sarcopenia (?	6)
Age	<65	10,936 (93.6)	94 (0.9)		Age	<65	10,936 (93.6)	665 (6.1)	-
	≥65	754 (6.4)	193 (25.6)	—		≥65	754 (6.4)	147 (19.5)	
Gender	Female	2,901 (24.8)	107 (3.7)		Gender	Female	2,901 (24.8)	166 (5.7)	-+
	Male	8,789 (75.2)	180 (2.0)	— —		Male	8,789 (75.2)	646 (7.4)	_
Obesity	No	4,714 (40.3)	93 (2.0)		Obesity	No	4,714 (40.3)	136 (2.9)	
	Yes	6,976 (59.7)	192 (2.8)				6,976 (59.7)	676 (9.7)	
Central obesity	No	5,983 (51.2)	128 (2.1)	→	Central obesity	No	5,983 (51.2)	260 (4.3)	_
obcany	Yes	5,707 (48.8)	159 (2.8)			Yes	5,707 (48.8)	552 (9.7)	-
Diabetes	No	9,976 (85.3)	167 (1.7)		Diabetes	No	9,976 (85.3)	598 (6.0)	-
	Yes	1,714 (14.7)	120 (7.0)	- -		Yes	1,714 (14.7)	214 (12.5)	-
Metabolic syndrome	No	6,310 (54.0)	106 (1.7)		Metabolic	No	6,310 (54.0)	284 (4.5)	
synorome	Yes	5,380 (46.0)	181 (3.4)	- -	syndrome	Yes	5,380 (46.0)	528 (9.8)	-
Metabolic risk	0~1	3,107 (25.8)	50 (1.7)	- -	Metabolic	0~1	3,107 (25.8)	92 (3.0)	
1156.	2~3	5,730 (49.0)	143 (2.5)	→	risk	2-3	5,730 (49.0)	399 (7.0)	_
	≥4	2,943 (25.2)	94 (3.2)	- -		≥4	2,943 (25.2)	321 (10.9)	-
				0.5 1					
			0	aOR for fibrosis					0 0.5

Physical activity above median value

Sarcopenia


Adjusted for central obesity, hypertension, diabetes, lipids, smoking, alcohol consumption

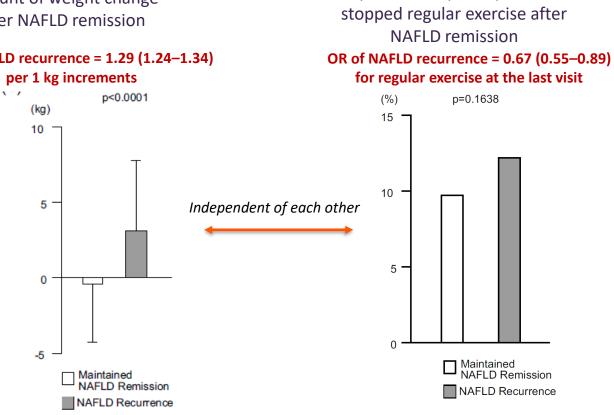
Chun HS., Clinical Gastroenterology and Hepatology 2023

aOR for sarcopen

Vigorous physical activity provides protection against all-cause deaths among adults patients with NAFLD

- NHANES (1999–2006), n = 1706 with NAFLD
- Self-reported PA
- US-Fatty Liver Index

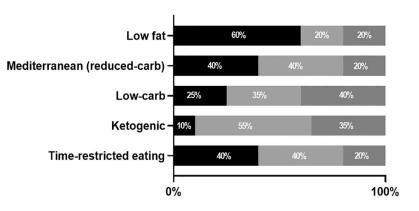
Henry A., Aliment Pharmacol Ther 2022


Adjusted for race, education, income, smoking status, household time PA, transportation time PA

Weight regain and lack of exercise are associated with NAFLD recurrence

OR of NAFLD recurrence = 1.29 (1.24–1.34) per 1 kg increments

- Retrospective cohort study
- 10.8 y years
- 1260 men with NAFLD who achieved remission
- 49% NAFLD recurrence at the last visit

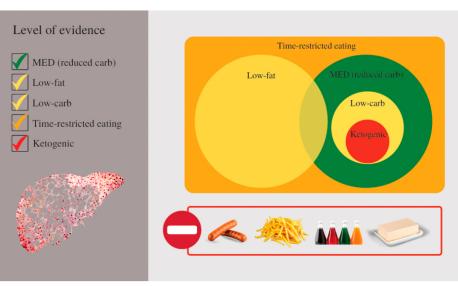


Proportions of participants who

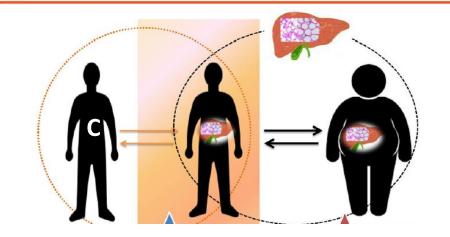
Nakanishi N., Scientific Reports 2021

A conceptual summary of the level of evidence of each type of diet for the treatment of NAFLD and suggested combinations

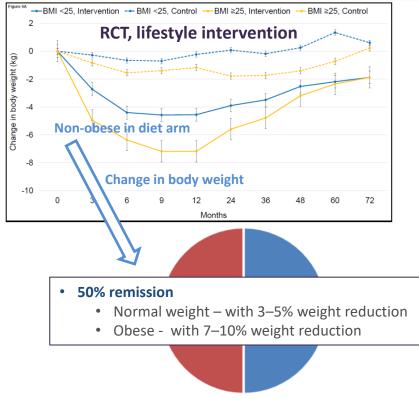
Macronutrients ditribution according to diet type



Zelber-Sagi S., Liver International 2022


Carbohydrate %
Fat %

Protein %


The colours represent the level of evidence of each type of diet in the treatment of NAFLD

Beneficial effects of lifestyle intervention in non-obese NAFLD

- Reduction of weight even within the normal BMI range
- Reduced intake of fructose/ sugared soft drinks
- Physical activity- decrease visceral fat

Wai-Sun Wong V., J Hepatol 2018 Chen F., Hepatology 2019 Sinn DH., Eur J Gastroenterol Hepatol 2021

Sookoian S., Aliment Pharmacol Ther 2017

NAFLD Remission

No Remission

AGA Clinical Practice Update: Management of Lean NAFLD

Best Practice Advice:

In lean patients with NAFLD, lifestyle intervention, including exercise, diet modification, and avoidance of fructose- and sugar-sweetened drinks, to target a modest weight loss of 3%–5%

Take home messages

- Diet is the cause and the treatment of NAFLD
- Changes in lifestyle are hard to make, but even small ones make a difference
- Normal weight NAFLD is not an excuse to avoid diet
- Dietary composition modification is also important
- Physical activity may improve much more than steatosis and saves lives!