HCC and Surgical Rx Options

Neil Mehta, MD

Associate Professor of Medicine UCSF Division of GI/Hepatology San Francisco, California

- HCC diagnosis/staging (LI-RADS + BCLC)
- Resection versus LT for HCC
 - Criteria for surgical management of HCC
 - Comparison of surgical outcomes
 - Salvage transplant

Case Presentation

55-year-old man with alcohol-associated cirrhosis, found on screening ultrasound to have a 3 cm lesion in the right lobe. Quad-phase CT of the abdomen confirmed the presence of a 3.5 cm lesion in the right lobe along with mild ascites. Examination showed no spider nevi. Spleen tip palpable.

Laboratory evaluation showed bilirubin 1.7, ALT 28, AST 42, albumin 3.5, INR 1.3, platelets 85,000, AFP 36.

Questions:

- 1. What are the typical characteristics of HCC on quad-phase CT?
- 2. Should we biopsy the lesion and why?

HCC – Is Biopsy Necessary?

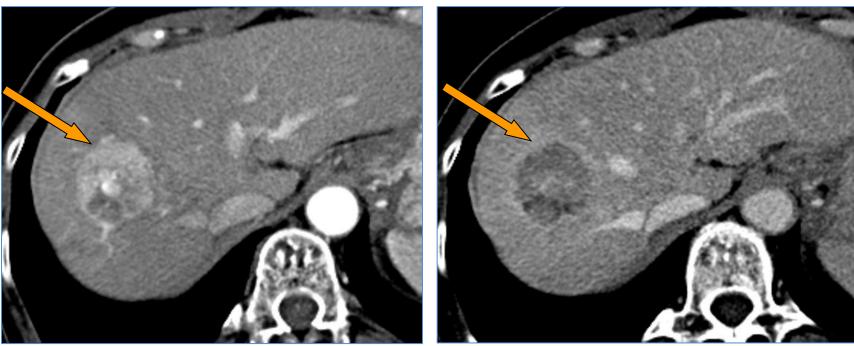
Biopsy is not necessary to confirm HCC diagnosis if the lesion meets radiologic criteria in the appropriate clinical setting (e.g. LI-RADS 5)

False negative biopsy occurs in clinical practice and may lead to delay in diagnosis and treatment

Tumor seeding along the biopsy tract rare (<1%)

Biopsy in selected cases if atypical radiologic appearance (e.g. LI-RADS M) or lack of strong risk factor for HCC

Liver Imaging Reporting And Data System (LI-RAD) Major Diagnostic Criteria

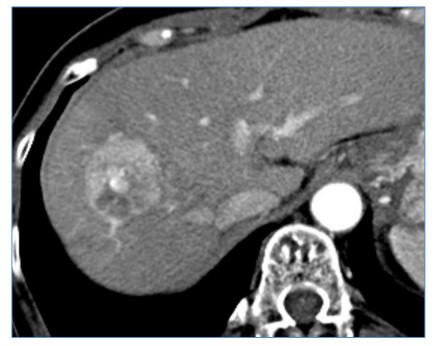

- Arterial phase hyper-enhancement
- Delayed phase "washout"
- Pseudo-capsule
- Interval growth ≥50% diameter within 6 mo

Different diagnostic criteria for lesion ≥2 cm versus < 2 cm

HCC – Radiologic Diagnosis

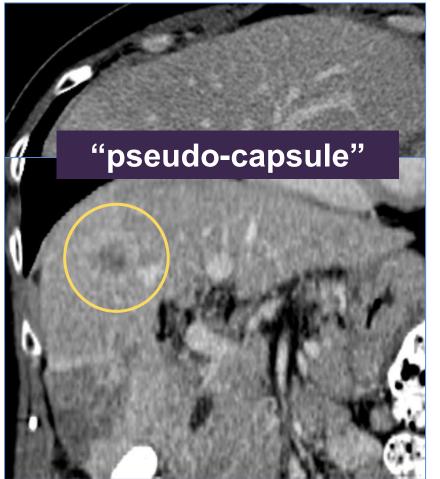
Arterial Phase

Portal Venous phase



Hyper-enhancement

"washout"


HCC – Radiologic Diagnosis

Arterial Phase

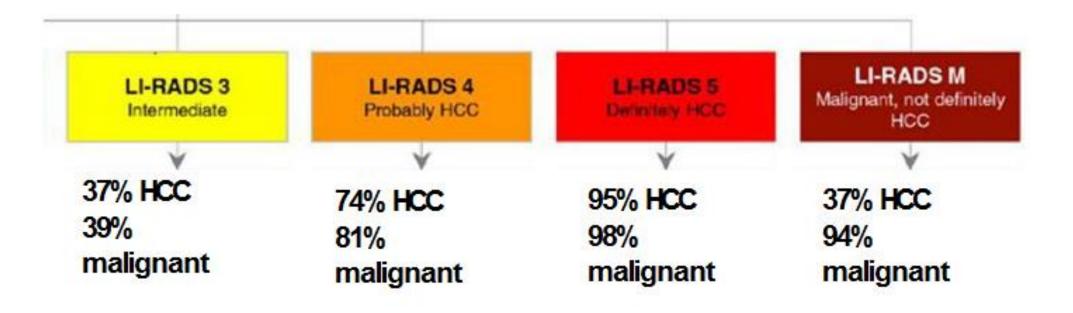
Hyper-enhancement

Portal Venous phase

Liver Imaging Reporting and Data System (LI-RADS)

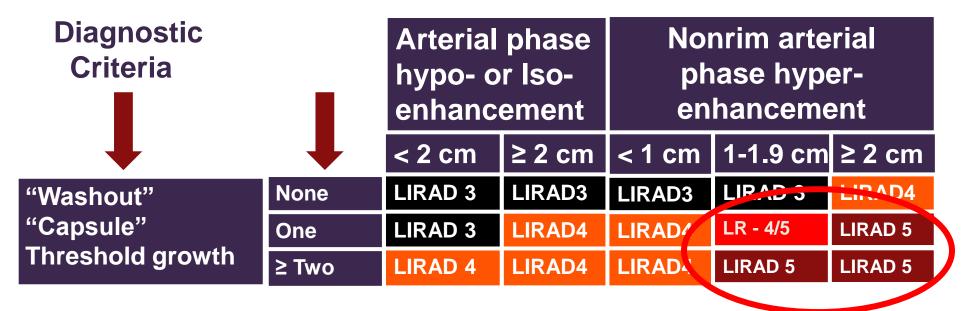
American College of Radiology: Standardized reporting of CT or MRI imaging for HCC in patients with cirrhosis or other risk factors

Li-RAD 1: Definite benign


Li-RAD 2: Probable benign

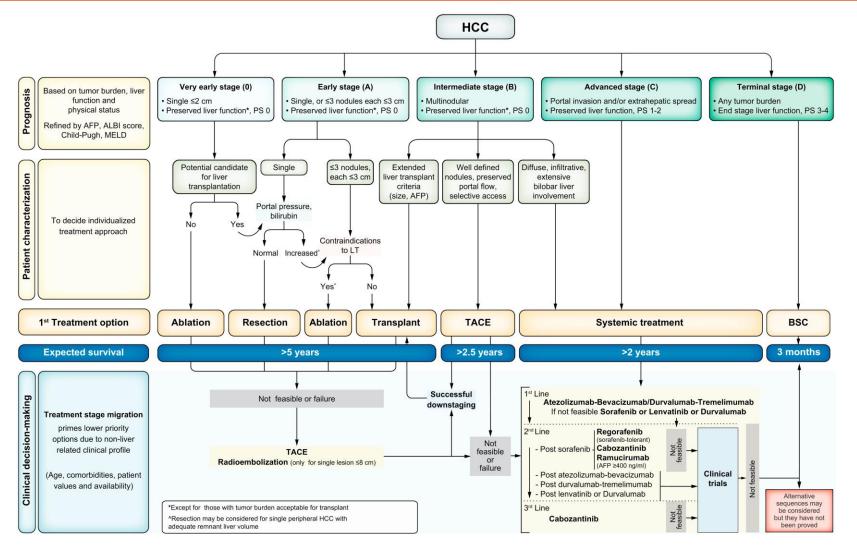
Li-RAD 3: Indeterminate

Li-RAD 4: Probable HCC


Li-RAD 5: Definite HCC

LI-RADS Accuracy

Liver Imaging Reporting and Data System (LI-RADS)


LIVER MASS

UNOS imaging criteria for HCC in determining MELD exception listing: LI-RADS 5 only

- 1-1.9 cm lesion with enhancing capsule: LIRADS-4
- 1-1.9 cm lesion with washout or threshold growth: LIRADS-5
- •Example: 2 lesions 1.5 cm both LR-5 IS eligible for MELD exception

Hepatocellular Carcinoma BCLC Staging Classification

Reig M et al. Journal of Hepatology. 2022.

Case Presentation

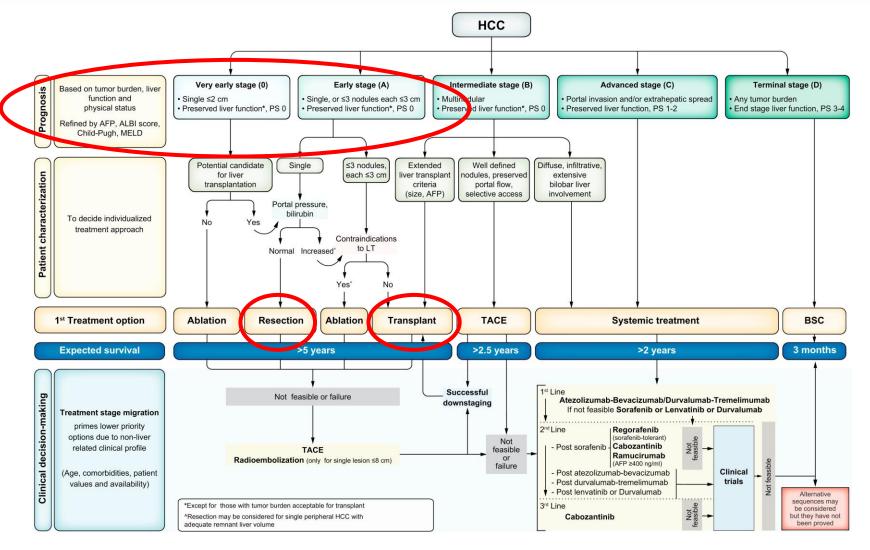
55-year-old man with chronic hepatitis C and biopsy proven cirrhosis, found on screening ultrasound to have a 3 cm lesion in the right lobe. Quad-phase CT of the abdomen showed a 3.5 cm arterial enhancing lesion in segment 6 with washout. No symptoms other than mild fatigue. No history of substance abuse. Examination showed no spider nevi. Spleen tip palpable. Dx: LI-RADS 5 per Tumor Board review.

Laboratory evaluation showed bilirubin 1.7, ALT 128, AST 98, albumin 3.5, INR 1.3, platelets 85,000, AFP 36.

What treatment would you recommend?

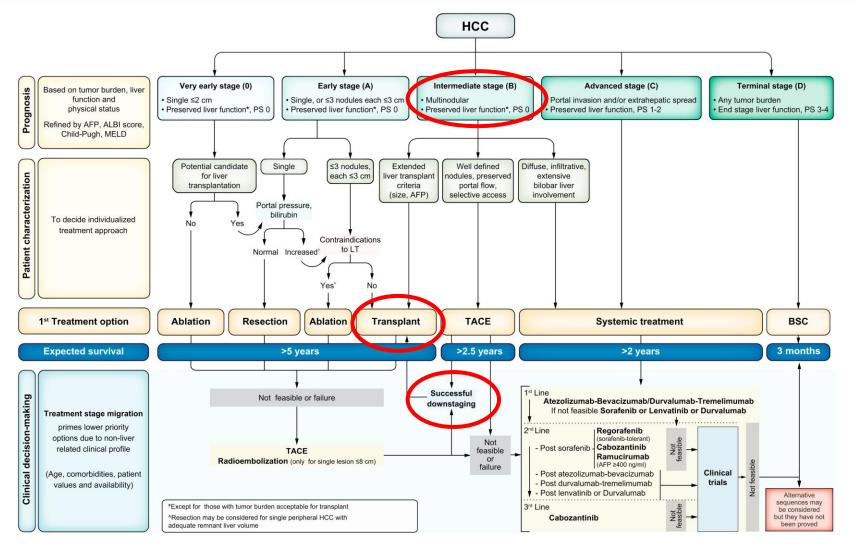
- 1. Anatomic resection
- 2. Wedge resection
- 3. Liver transplantation
- 4. Percutaneous microwave ablation (MWA)

Case Presentation

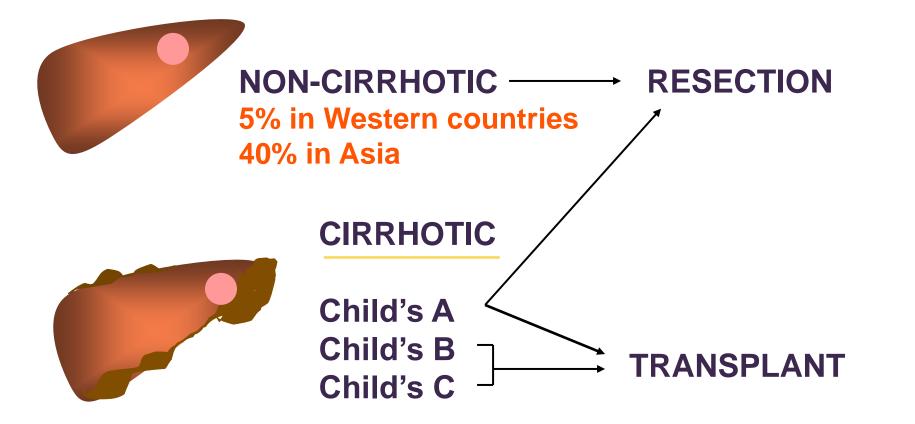

55-year-old man with chronic hepatitis C and biopsy proven cirrhosis, found on screening ultrasound to have a 3 cm lesion in the right lobe. Quad-phase CT of the abdomen showed a 3.5 cm arterial enhancing lesion in segment 6 with washout. No symptoms other than mild fatigue. No history of substance abuse. Examination showed no spider nevi. Spleen tip palpable. Dx: LI-RADS 5 per Tumor Board review.

Laboratory evaluation showed bilirubin 1.7, ALT 128, AST 98, albumin 3.5, INR 1.3, platelets 85,000, AFP 36.

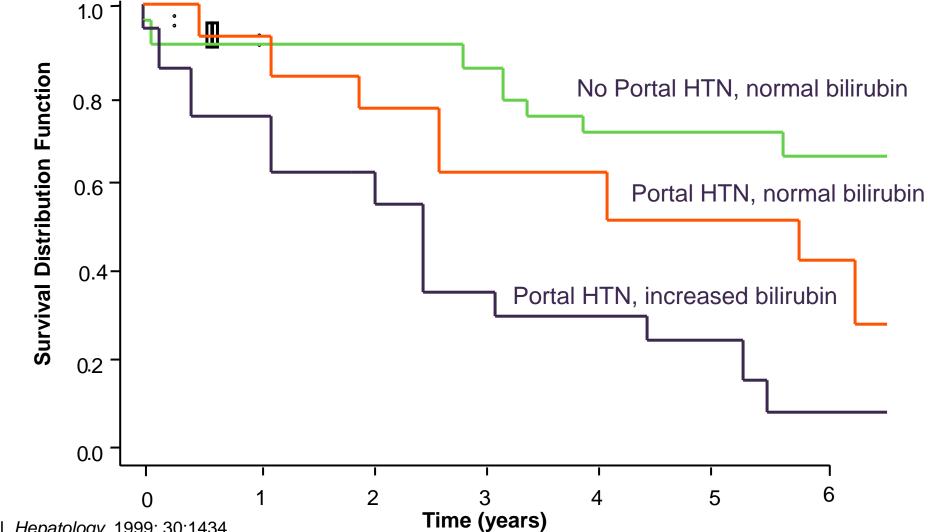
What treatment would you recommend?


- 1. Anatomic resection
- 2. Wedge resection
- 3. Liver transplantation
- 4. Percutaneous microwave ablation (MWA)

Hepatocellular Carcinoma BCLC Staging Classification


Reig M et al. Journal of Hepatology. 2022.

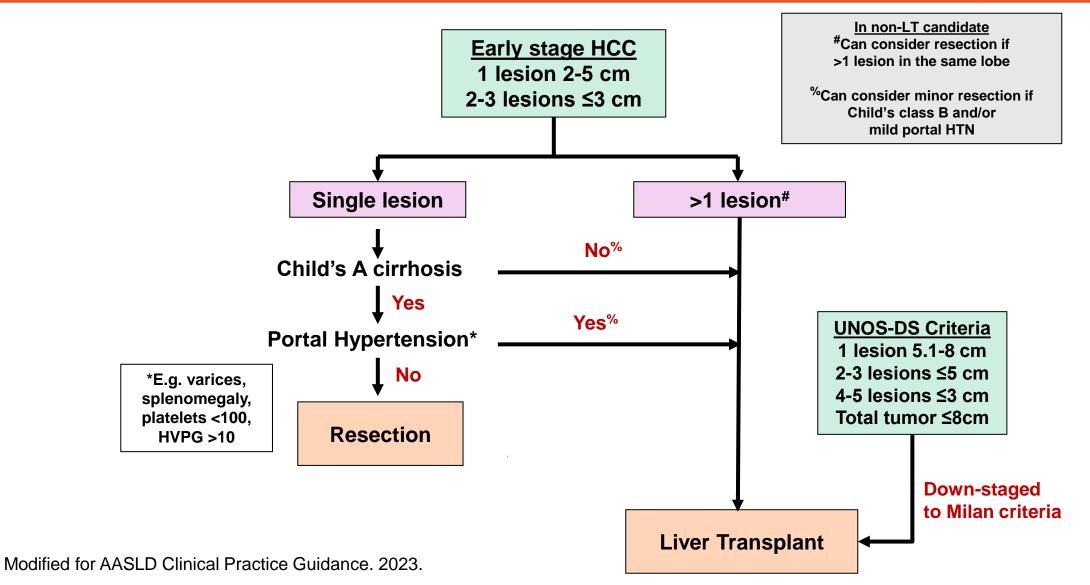
Hepatocellular Carcinoma BCLC Staging Classification



Reig M et al. Journal of Hepatology. 2022.

Surgical Treatment for HCC Cirrhosis and Liver Function

Survival Following Resection: Impact of **Portal Hypertension**


Llovet et al. Hepatology. 1999; 30:1434.

Hepatic Resection for HCC With Cirrhosis

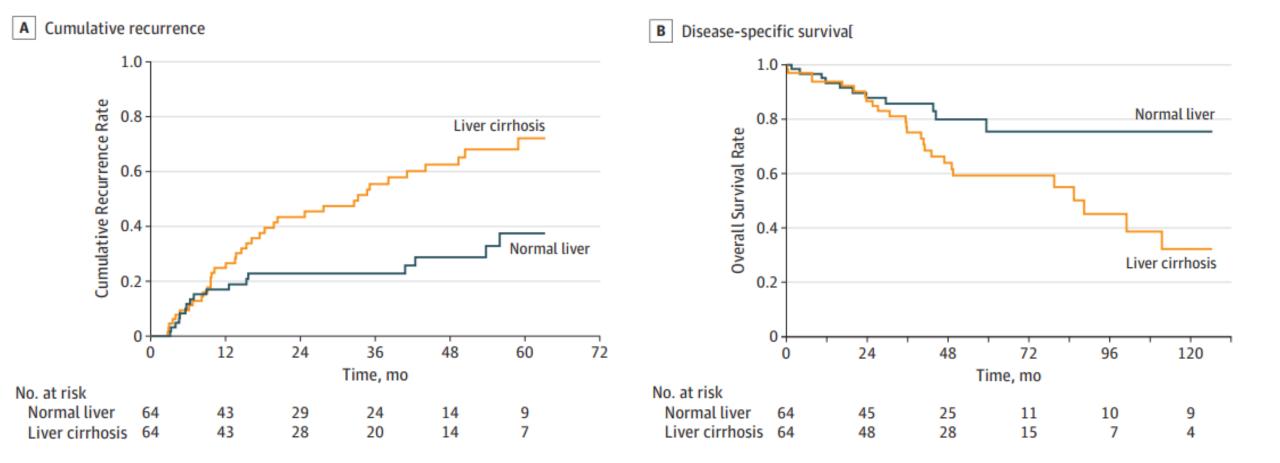
"Ideal" candidate

- Good liver function Child's A
- No portal hypertension (suggested by varices, enlarged spleen, platelets <100)
- Normal bilirubin
- Single lesion ≤5 cm
- Location of tumor in left lobe (i.e. laparoscopic approach; minor hepatectomy)

Algorithm for Surgical Treatment of Early-Stage HCC

Tumor Recurrence Post-Resection

Approx 40-50% at 3 yrs and 60-70% at 5 yrs

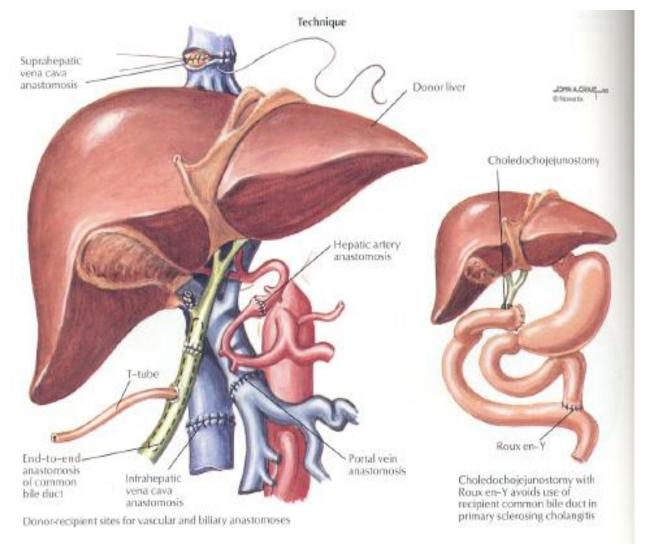

Cha et al. JACS. 2003.

Tumor Recurrence Post-Resection

Approx 40-50% at 3 yrs and 60-70% at 5 yrs <u>Predictors of tumor recurrence</u>

- Vascular invasion
- Multi-focal HCC/ satellite tumor nodules
- Tumor size > 5 cm
- Positive resection margins
- Lymph node involvement
- High alpha-fetoprotein

Resection Outcome Cirrhosis Vs. "Normal" Liver

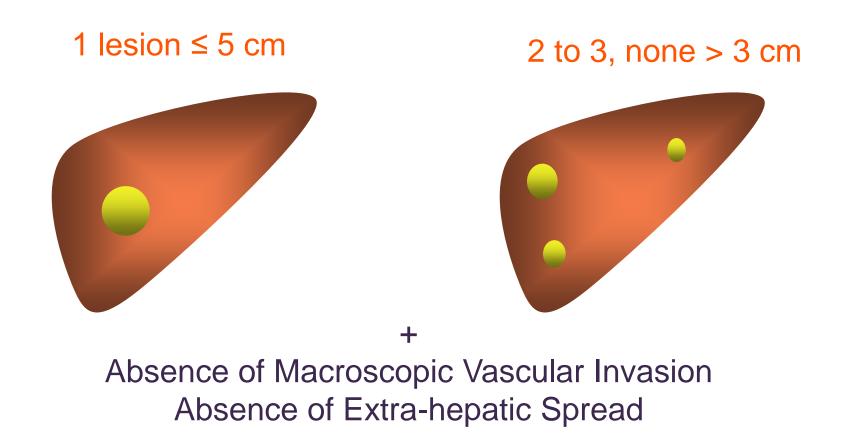

Sasaki K et al. JAMA Surgery. 2018.

Advantages of Liver TX

Best oncologic resection

Replaces diseased liver

Restores normal hepatic function



Intention-to-Treat Analyses Meta-Analyses - Recurrence

Resection Transplantation


	LR		LT			OR		OR
Study or Subgroup E	vents	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Llovet et al. ⁶ (1999)	44	77	3	87	6.3%	37.33 (10.84-128.61)	1999	
Margarit ³⁸ (2005)	22	37	4	36	6.3%	11.73 (3.43-40.11)	2005	
Shah et al.12 (2007)	53	121	17	140	12.4%	5.64 (3.03-10.50)	2007	
Baccarani et al.13 (2008)	123	245	22	134	13.7%	5.13 (3.05-8.64)	2008	
Bellavance et al. ²³ (2008)	13	38	1	48	2.8%	24.44 (3.02-197.80)	2008	
Koniaris et al.14 (2011)	21	31	31	234	9.7%	13.75 (5.92-31.94)	2011	
Adam et al.15 (2012)	60	97	10	101	10.5%	14.76 (6.83-31.90)	2012	
Sogawa et al.16 (2012)	40	56	16	75	10.2%	9.22 (4.14-20.53)	2012	
Sapisochin et al. ¹⁷ (2013)	68	95	19	122	11.9%	13.65 (7.04-26.47)	2013	
Jiang et al. 18 (2014)	23	33	6	34	6.9%	10,73 (3.39-33.99)	2014	
Li ³⁹ (2014)	105	243	7	39	9.5%	3.48 (1.48-8.19)	2014	
Fotal (95% CI)		1073		1050	100.0%	9.61 (6.57-14.06)		•
Total events	572		136					0.000
Heterogeneity: Tau ² = 0.1	20; chi-	square	= 21.57,	df = 10	(P = 0.02)	2); 1 ² = 54%	to	
Test for overall effect: Z =					말라고 아파가	SN ()(SN(2))	0.0	1 0.1 1 10 10 LR LT

Liver Transplantation for HCC Milan Criteria

Mazzaferro et al. N Engl J Med. 1996;334:693-699.

Liver Transplantation for HCC Stage T2 Criteria

Mazzaferro et al. N Engl J Med. 1996;334:693-699.

Post-LT HCC Recurrence

- HCC recurrence is the most common cause of death after liver transplant for HCC
- Median survival after HCC recurrence ~1 year after diagnosis
- Patient selection is the key to prevent recurrence

Massie AB et al. *Am J Transpl.* 2011; 11:2362-2371; Zimmerman MA et al. *Arch Surg.* 2008; 143:182-188; Clavien PA et al. *Lancet Oncology.* 2012; 13:11-22.

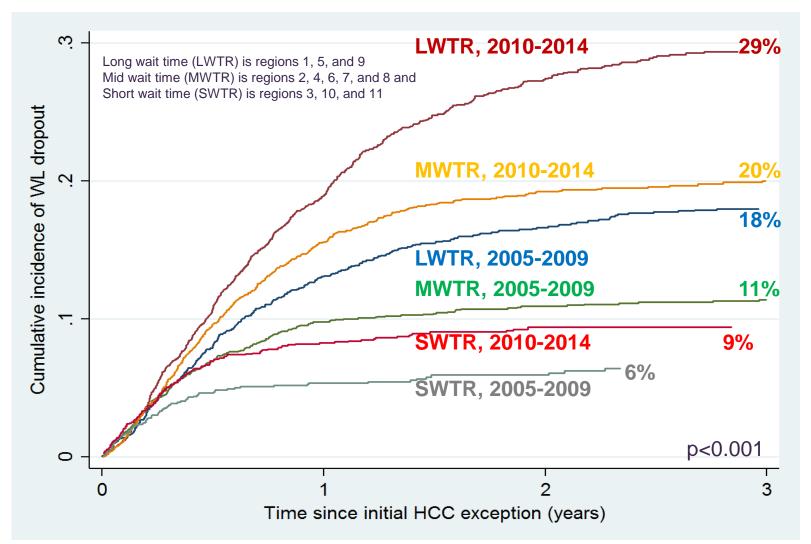
Liver Transplant for HCC: Recent Changes

- Uniform diagnostic criteria (OPTN/ LIRADS) + standardized reporting
 - Only HCC pts within T2/Milan criteria with <u>LI-RADS 5</u> lesions are eligible to receive priority listing

Liver Transplant for HCC: Recent Changes

 6-month mandatory waiting period before awarding MELD exception

Delayed HCC-MELD Exception Score

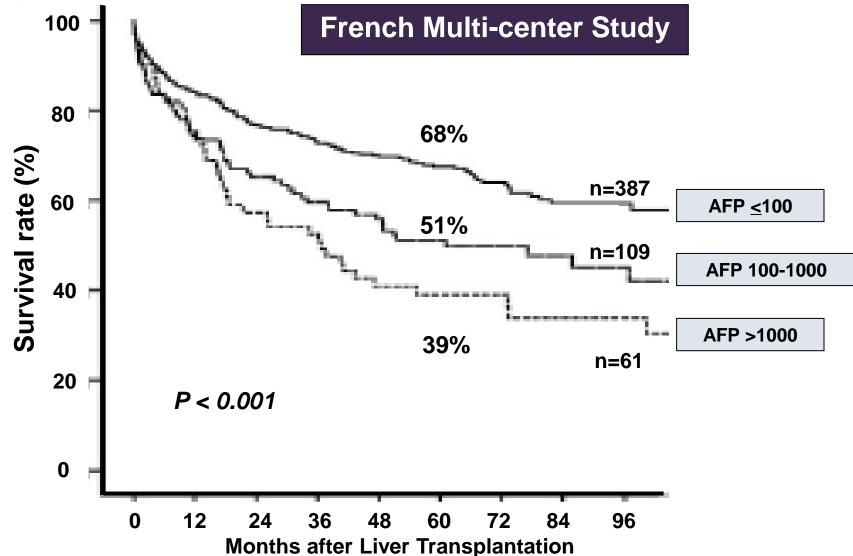

Delays in HCC-MELD exception	HCC Transplant rates (per 100 person-years)	Non-HCC Transplant rates (per 100 person-years)
0	108.7	30.1
3 months	65.0	32.5
6 months	44.2	33.9
9 months	33.6	34.8

Heimbach J et al. *Hepatology*. 2015;61:1643-1650.

Liver Transplant for HCC: Recent Changes

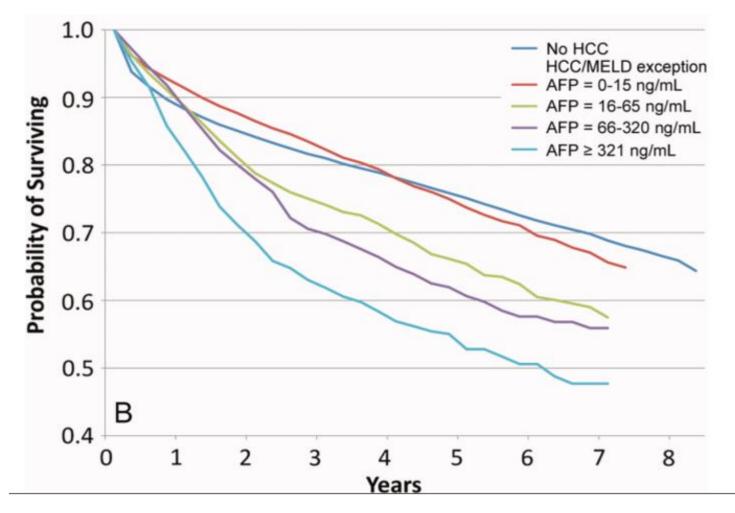
- 6-month mandatory waiting period before awarding MELD exception
- Regional variation in access to LT for HCC still exists

Probability of Waitlist Dropout by Wait Time Region and Listing Period

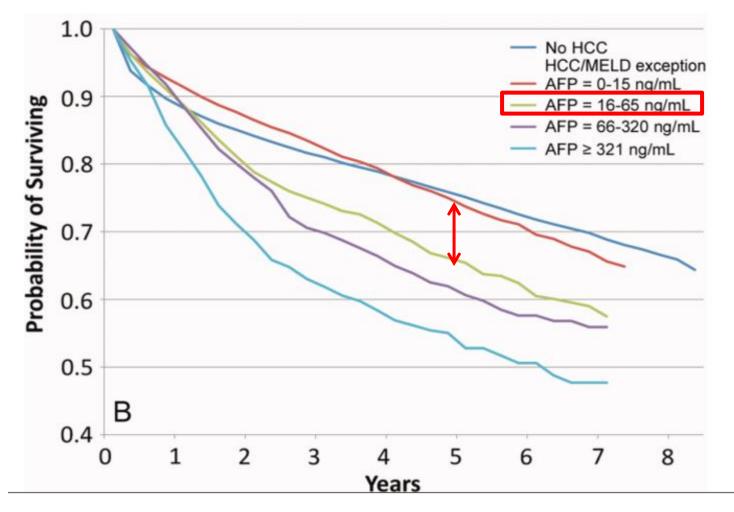


Mehta N et al. Liver Transplantation. 2018.

Liver Transplant for HCC: Recent Changes

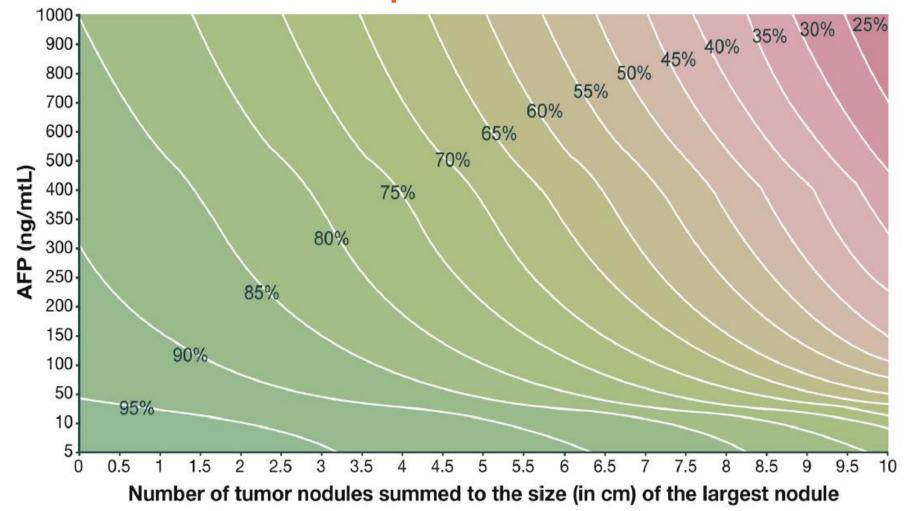

- HCC MELD ladder system has been replaced by awarding median MELD at transplant minus 3 points (MMAT-3) for the donor hospital
 - 6 month waiting period still in effect

AFP and Post-transplant Outcome – France

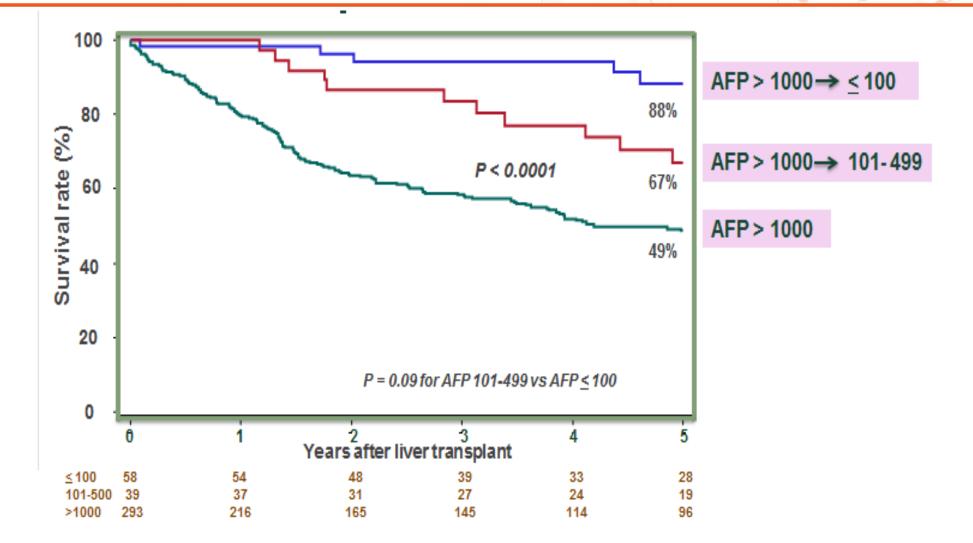

Duvoux et al. Gastroenterology. 2012;143:986-94.

AFP and Post-LT HCC Survival

Berry et al. Liver Transplantation. 2013; 634-45.


AFP and Post-LT HCC Survival

Berry et al. Liver Transplantation. 2013; 634-45.


LT for HCC: Metroticket 2.0

HCC Specific Survival

Mazzaferro V et al. Gastroenterology. 2017.

Reducing High AFP Prior To LT

Mehta N. Hepatology. 2019.

UNOS Policy Change

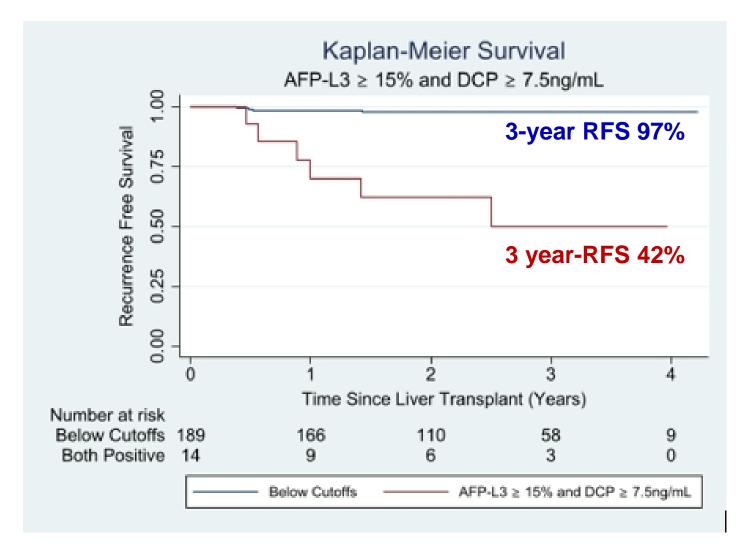
High AFP Threshold

- Candidates with lesions meeting T2 criteria but with an AFP >1000 are not eligible for a standardized MELD exception
- If AFP falls <500 after LRT, the candidate is eligible for a standardized MELD exception

UNOS Policy Change

High AFP Threshold

- Candidates with lesions meeting T2 criteria but with an AFP >1000 are not eligible for a standardized MELD exception
- If AFP falls <500 after LRT, the candidate is eligible for a standardized MELD exception


However, AFP reduction to <100 after LRT is ideal

DCP + AFP + AFP-L3 (Mayo Clinic)

Factors predicting HCC Recurrence	HR (p-value)	C statistic	
Milan		0.63	
Among tumors within Milan			
AFP <u>></u> 250	3.2 (p=0.01)	0.68	
DCP <u>≥</u> 7.5	4.3 (p<0.001)	0.7	
AFP-L3% <u>></u> 35	4.5 (p<0.001)	0.7	
Absolute AFP-L3 > 56	4.1 (p=0.001)	0.68	

Chaiteerakij et al. Liver Transpl. 2015; 21:599-606.

Dual Positivity for AFP-L3 >15% and DCP >7.5 Predicts Worse Post-It Survival

Norman J, Mehta N. AASLD Liver Meeting. 2022.

56-year-old man with chronic HBV, well suppressed on anti-viral therapy. He received inadequate HCC surveillance and was found to have two LI-RADS 5 tumors in the right lobe measuring 5 cm and 3 cm. Asymptomatic (ECOG 0). No substance abuse. No significant medical history.

Laboratory: HCT 42.4, platelets 84,000, creatinine 0.6, total bilirubin 0.9, albumin 4.2, hepatitis B DNA (-), AFP 49 ng/mL

56-year-old man with chronic HBV, well suppressed on anti-viral therapy. He received inadequate HCC surveillance and was found to have two LI-RADS 5 tumors in the right lobe measuring 5 cm and 3 cm. Asymptomatic (ECOG 0). No substance abuse. No significant medical history.

Laboratory: HCT 42.4, platelets 84,000, creatinine 0.6, total bilirubin 0.9, albumin 4.2, hepatitis B DNA (-), AFP 49 ng/mL

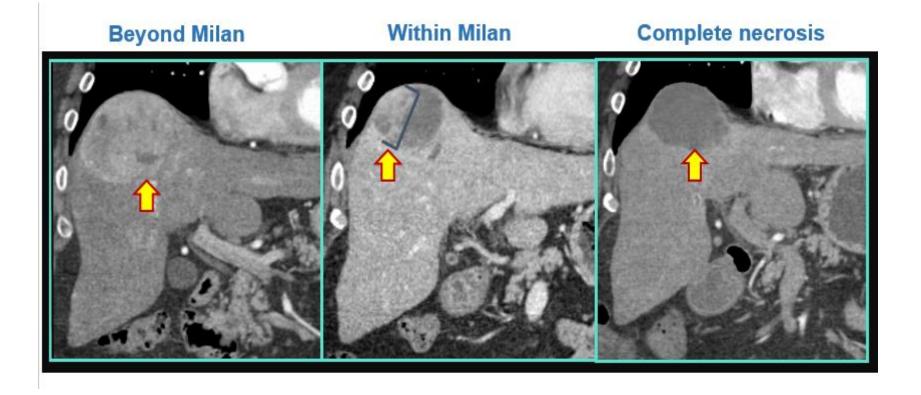
What treatment would you recommend?

- 1. Resection
- 2. Microwave ablation
- 3. Atezolizumab/Bevacizumab
- 4. Liver transplant after down-staging to within Milan criteria

56-year-old man with chronic HBV, well suppressed on anti-viral therapy. He received inadequate HCC surveillance and was found to have two LI-RADS 5 tumors in the right lobe measuring 5 cm and 3 cm. Asymptomatic (ECOG 0). No substance abuse. No significant medical history.

Laboratory: HCT 42.4, platelets 84,000, creatinine 0.6, total bilirubin 0.9, albumin 4.2, hepatitis B DNA (-), AFP 49 ng/mL

What treatment would you recommend?


- 1. Resection
- 2. Microwave ablation
- 3. Atezolizumab/Bevacizumab
- 4. Liver transplant after down-staging to within Milan criteria

Down-Staging of HCC for Transplant

- <u>Definition</u>: Reduction in the size of tumor using local regional therapy to meet acceptable criteria for liver transplant¹
- <u>Tumor response</u>: Based on radiographic measurement of the size of all viable tumors, not including the area of necrosis from local regional therapy ²
- <u>A selection tool</u> for tumors with more favorable biology that respond to down-staging treatment and also do well after liver transplant ¹

1. Yao & Fidelman. *Hepatology*. 2016;63:1014-1025; 2. EASL Guidelines - Briux J et al. *J Hepatol*. 2001;35: 421–430.

Down-Staging of HCC for Transplant

Local Regional Therapies for HCC

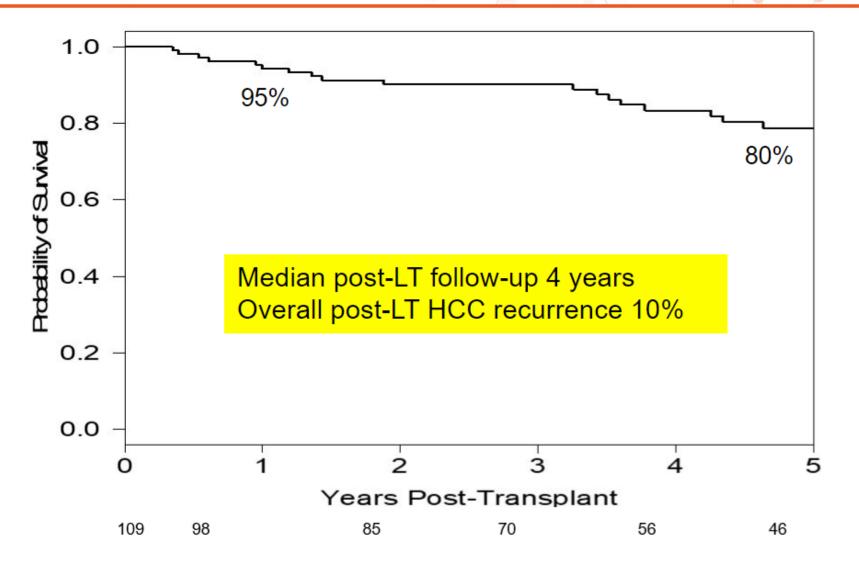
CHEMOEMBOLIZATION (TACE)

Conventional versus Drug-eluting beads ABLATIONS CHEMICAL Percutaneous ethanol injection (PEI)

THERMAL

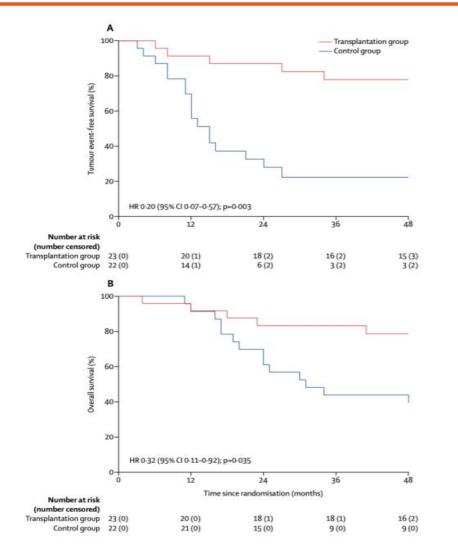
Radiofrequency ablation (RFA)

(Laparoscopic, percutaneous or open)


Microwave/ Cryo- ablation

RADIOEMBOLIZATION (YITTRIUM - 90) STEREOTACTIC BODY RADIATION (SBRT)

National Down-Staging Protocol (UNOS-DS)


- Inclusion criteria
 - 1 lesion > 5 cm and \leq 8 cm
 - 2 or 3 lesions \leq 5 cm w/ total tumor diameter \leq 8 cm
 - 4 or 5 lesions \leq 3 cm w/ total tumor diameter \leq 8 cm
 - No vascular invasion on imaging
- Minimum 3-month observation period after successful downstaging into Milan before LT can be undertaken

Region 5 D/S Multi-Center Study: Post-LT Survival

Mehta N et al. Clin Gastroenterol Hepatol. 2018;16:955-964.

Multicenter Down-Staging RCT: Italy

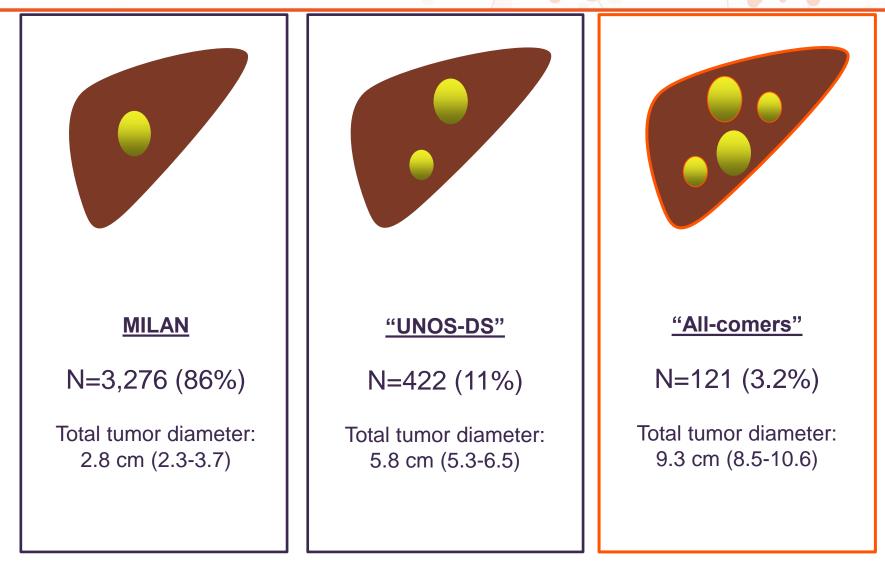
 From 2011-15, pts initially beyond Milan criteria with partial or complete response (mRECIST) randomly assigned to LT or nontransplantation therapies

Mazzaferro et al. Lancet Oncology. 2020.

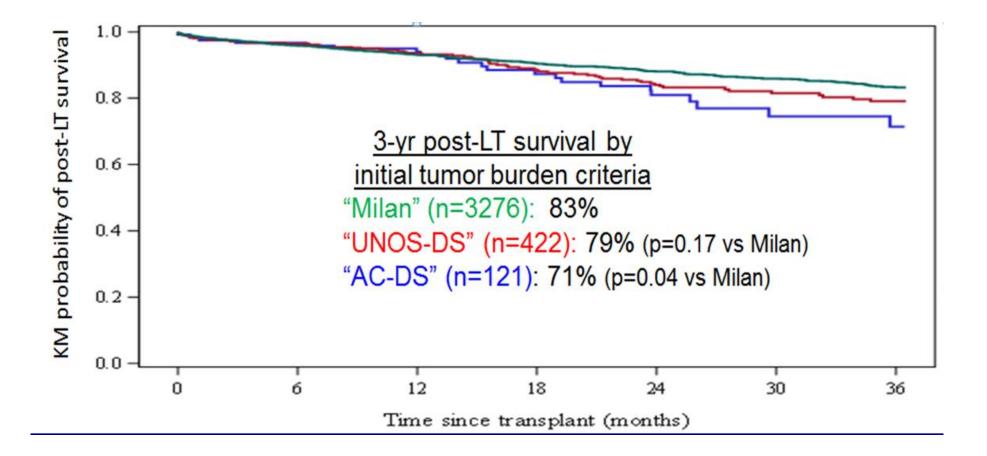
UNOS Down-Staging Protocol

- Inclusion criteria
 - 1 lesion > 5 cm and \leq 8 cm
 - 2 or 3 lesions \leq 5 cm w/ total tumor diameter \leq 8 cm
 - 4 or 5 lesions \leq 3 cm w/ total tumor diameter \leq 8 cm
 - No vascular invasion on imaging
- This protocol has recently been adopted as national policy for automatic priority listing in patients who have been successfully down-staged to within Milan criteria

Multicenter Evaluation of Reduction in Tumor Size before Liver Transplantation (MERITS-LT) Consortium



Prospective Down-Staging Multi-Regional Study: MERITS-LT


- Among 209 HCC pts meeting UNOS-DS criteria, 2-yr probability of successful down-staging 88%
- No difference in probability of successful down-staging or liver transplant between TACE (n=132) and Y-90 (n=62)
- Tumor under-staging (explant > Milan) in 43%, and sum of the number of viable tumors + largest tumor diameter on last imaging only significant predictor of under-staging

UNOS HCC COHORTS (N=3819)

Mehta et al. *Hepatology*. 2020;71(3):943-54.

UNOS Down-Staging Protocol

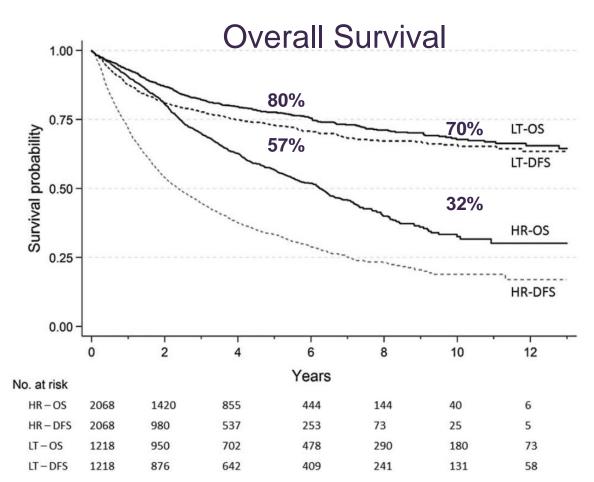
Outcomes: Liver Resection vs. LT

Liver Transplantation and Hepatic Resection can Achieve Cure for Hepatocellular Carcinoma

Antonio Daniele Pinna, MD,* Tian Yang, MD,† Vincenzo Mazzaferro, MD, PhD,‡ Luciano De Carlis, MD, FEBS,§ Jian Zhou, MD, PhD,¶ Sasan Roayaie, MD, || Feng Shen, MD, PhD,† Carlo Sposito, MD, PhD,† Matteo Cescon, MD, PhD,* Stefano Di Sandro, MD, PhD,§ He Yi-feng, MD,¶ Philip Johnson, MD, FRCP,** and Alessandro Cucchetti, MD*

 Multinational study, N=3286 HCC pts treated with LT (n=1218) or resection (n=2068) to estimate statistical cure

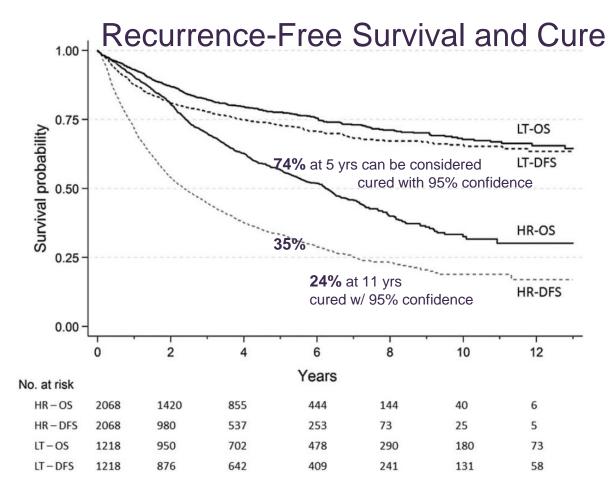
Outcomes: Liver Resection vs. LT

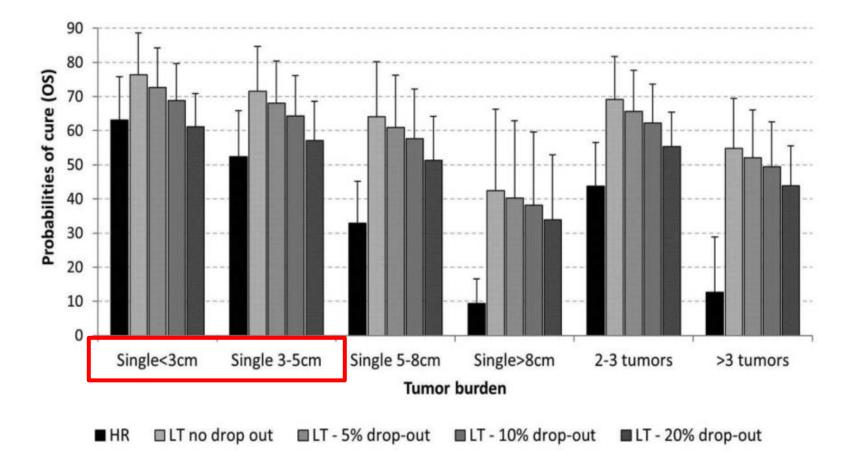

Characteristics	LT (n: 1218)	HR (n: 2068)
Age, y		
Mean (SD)	53.7 (8.6)	59.1 (12.4)
Median (IQR)	54 (48-60)	60 (51-67)
Radiological number of vital HCCs	before surgery	
None	329 (27.0%)	0 (0.0%)
Single nodule	504 (41.4%)	1597 (77.2%)
2-3 nodules	300 (24.6%)	399 (19.3%)
More than 3 nodules	85 (7.0%)	72 (3.5%)
Radiological largest vital HCC befor	e surgery, cm [†]	
Mean (SD)	3.0 (2.0)	4.8 (3.3)
Median (IQR)	2.0 (2.0-4.0)	4.0 (2.5-6.0)
Last AFP before surgery, ng/mL		
Median (IQR)	10.1 (4.2-42.6)	12.0 (6.3-316)
Transplant criteria fulfilled		
Milan	993 (81.5%)	1271 (61.4%)
Radiological up-to-7	1109 (91.1%)	1509 (73.0%)
UCSF	1072 (88.0%)	1537 (74.3%)
AFP French model	1057 (86.8%)	1236 (59.8%)
Shangai–Fudan	1101 (90.4%)	1725 (83.4%)
Metroticket 2.0	1045 (85.8%)	1226 (59.2%)
MELD score at surgery		
Mean (SD)	12.2 (5.4)	8.6 (2.0)
Median (IQR)	11 (8-14)	8 (7-9)

A Pinna et al. Ann Surg. 2018.

Outcomes: Liver Resection vs. LT

Liver Transplantation and Hepatic Resection can Achieve Cure for Hepatocellular Carcinoma

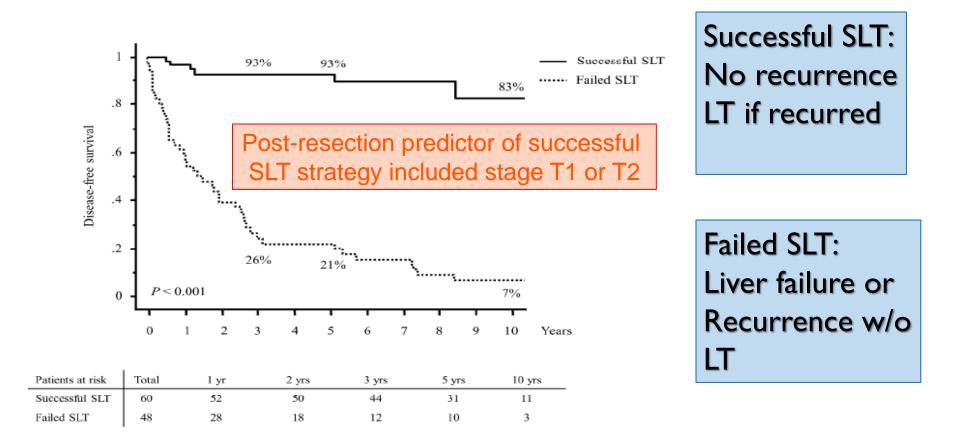

Antonio Daniele Pinna, MD,* Tian Yang, MD,† Vincenzo Mazzaferro, MD, PhD,‡ Luciano De Carlis, MD, FEBS,§ Jian Zhou, MD, PhD,¶ Sasan Roayaie, MD,|| Feng Shen, MD, PhD,† Carlo Sposito, MD, PhD,† Matteo Cescon, MD, PhD,* Stefano Di Sandro, MD, PhD,§ He Yi-feng, MD,¶ Philip Johnson, MD, FRCP,** and Alessandro Cucchetti, MD*


Cure: Liver Resection vs. LT

Liver Transplantation and Hepatic Resection can Achieve Cure for Hepatocellular Carcinoma

Antonio Daniele Pinna, MD,* Tian Yang, MD,† Vincenzo Mazzaferro, MD, PhD,‡ Luciano De Carlis, MD, FEBS,§ Jian Zhou, MD, PhD,¶ Sasan Roayaie, MD, || Feng Shen, MD, PhD,† Carlo Sposito, MD, PhD,† Matteo Cescon, MD, PhD,* Stefano Di Sandro, MD, PhD,§ He Yi-feng, MD,¶ Philip Johnson, MD, FRCP,** and Alessandro Cucchetti, MD*

Cure: Resection vs. LT

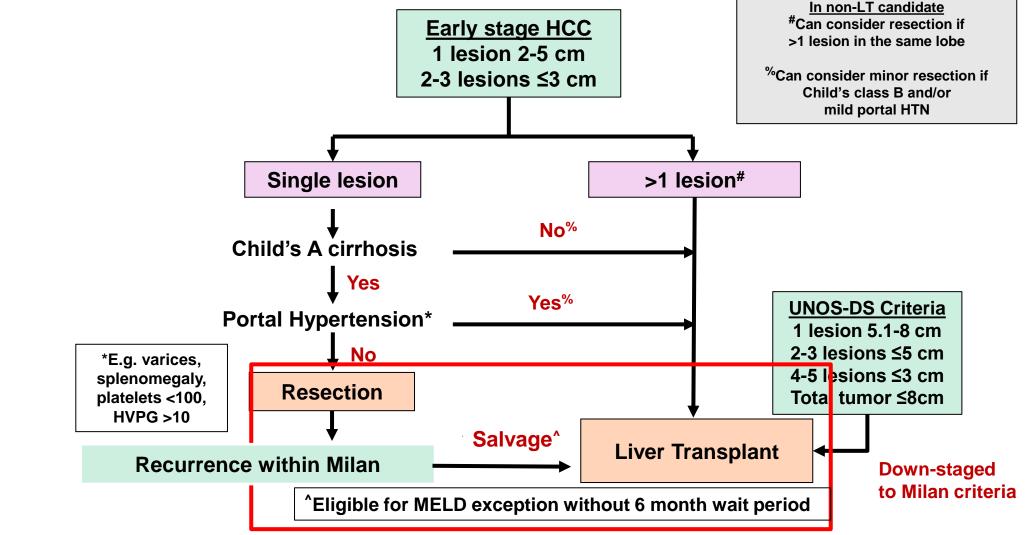


A Pinna et al. Ann Surg. 2018.

Post-Resection Recurrence: Salvage LTX

 Multiple studies performed assessing the strategy of resection and only if recurrence occurs within conventional transplant criteria to then pursue salvage LT

Strategy of Salvage Liver Transplantation Intention-to-Treat


De Haas et al. Hepatology. 2018.

Salvage LT vs. Primary LT 5-yr Post-LT Survival

	SLT		1	PLT		Odds ratio	Odds ratio	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95% Cl	M-H, fixed, 95% Cl	
Adam 2003	7	17	119	195	2.2%	0.45 [0.16, 1.22]		
Belghiti 2003	10	18	37	70	1.3%	1.11 [0.39, 3.16]		
Bhangui 2016	10	31	135	340	3.0%	0.72 [0.33, 1.58]		
Del Gaudio 2008	10	16	107	147	1.5%	0.62 [0.21, 1.83]		
Faciutto 2008	5	5	19	32	0.1%	7.62 [0.39, 149.49]		→
Hu 2012	465	859	3454	5727	80.5%	0.78 [0.67, 0.90]		
Margarit 2005	2	6	11	36	0.4%	1.14 [0.18, 7.15]		
Sapisochin 2010	9	17	22	34	1.3%	0.61 [0.19, 2.00]		
Scatton 2008	13	20	40	73	1.2%	1.53 [0.55, 4.28]		
Vennarecci 2007	8	9	23	37	0.2%	4.87 [0.55, 43.18]		_
Wang 2006	35	76	131	295	5.6%	1.07 [0.64, 1.77]	<u> </u>	
Wu 2012	25	36	111	147	2.6%	0.74 [0.33, 1.64]		
Total (95% CI)	1110			7133	100.0%	0.81 [0.71, 0.92]	•	
Total events	599		4209				•	
Heterogeneity: Chi ² =10.12, df=11 (P=0.52); l ² =0%								
Test for overall effect: Z=3.25 (P=0.001)						0.01 0.1 0 10	100	
							Favours [SLT] Favours [PLT]	

Yadav et al. Ann Transplant. 2018.

Algorithm for Surgical Treatment of Early-Stage HCC

Modified for AASLD Clinical Practice Guidance. 2023.

Take Away Slide (Resection)

- Resection status requires assessment of tumor burden, portal hypertension, MELD score, and extent of resection
- Resection associated with higher recurrence than LT but still 1st line tx, especially with single small tumor and in setting of organ shortages

Take Away Slide (Resection)

- The Milan criteria remain the gold-standard in the US though biomarkers should be incorporated for selection
 - E.g. AFP >1000 exclusion from LT unless decreases to <500 ng/ml with LRT
- After 6 month delay, eligible HCC pts now awarded MMAT-3 rather than previous ladder upgrade
- Similar post-LT survival observed for Milan and UNOS D/S patients
 → Down-staging now incorporated as national policy

Thank You! neil.mehta@ucsf.edu